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Gjedde–Patlak graphical analysis (GPGA) has commonly been used to quantify the net accumula-
tions (Kin) of radioligands that bind or are taken up irreversibly. We suggest an alternative approach
(MLAIR: multiple linear analysis for irreversible radiotracers) for the quantification of these types of
tracers. Two multiple linear regression model equations were derived from differential equations of
the two-tissue compartment model with irreversible binding. Multiple linear analysis for irreversible
radiotracer 1 has a desirable feature for ordinary least square estimations because only the
dependent variable CT(t) is noisy. Multiple linear analysis for irreversible radiotracer 2 provides Kin

from direct estimates of the coefficients of independent variables without the mediation of a division
operation. During computer simulations, MLAIR1 provided less biased Kin estimates than the other
linear methods, but showed a high uncertainty level for noisy data, whereas MLAIR2 increased the
robustness of estimation in terms of variability, but at the expense of increased bias. For real
[11C]MeNTI positron emission tomography data, both methods showed good correlations, with
parameters estimated using the standard nonlinear least squares method. Multiple linear analysis
for irreversible radiotracer 2 parametric images showed remarkable image quality as compared with
GPGA images. It also showed markedly improved statistical power for voxelwise comparisons than
GPGA. The two MLAIR approaches examined were found to have several advantages over the
conventional GPGA method.
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Introduction

Parameter estimations using nonlinear least square
(NLS) methods are not suitable for generating
images of kinetic parameters (parametric images)
from dynamic positron emission tomography (PET)
data, mainly because of the high level of noise in the
time–activity curves of individual PET voxels. The
extensive computation time required for iterative

parameter estimation is another important reason for
this unsuitability. Therefore, several graphical meth-
ods have been devised to estimate kinetic para-
meters based on linear regression analysis, and have
been used to generate parametric images, because
they are computationally simple and independent of
any particular model structure (Gjedde, 1981, 1982;
Patlak et al, 1983; Logan et al, 1990, 1996; Yokoi
et al, 1993).

However, these graphical approaches may provide
biased estimates if there are regional differences
between the times required to reach tissue–plasma
equilibrium of radiotracer concentrations and/or
noise levels in tissue time–activity curves are
high (Carson, 1993; Slifstein and Laruelle, 2000).
Although several methods have been proposed to
reduce such bias and improve the accuracy
of parameter estimations for radiotracers with
reversible uptake or binding (Carson, 1993;
Ichise et al, 2002, 2003; Logan et al, 2001; Varga
and Szabo, 2002), little has been done to quantify
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kinetic parameters of irreversible tracers (Blomqvist,
1984).

In this study, therefore, we focused on the multi-
ple linear analysis method to effectively calculate
the net accumulation rate (Kin) of radiotracer with an
irreversible specific binding and to generate its
parametric images. Two different formulas (MLAIR:
multiple linear analysis for irreversible radiotracers)
were used for this purpose, which were derived
from the differential equations for the irreversible
two-tissue compartment model. The statistical prop-
erties of these methods were explored by Monte
Carlo simulation. These methods were applied to
the dynamic PET data of N10-([11C]methyl)naltrin-
dole (MeNTI) to assess the usefulness of these
methods for volume of interest (VOI) analysis and
parametric image generation. Their plausibilities for
voxelwise statistical analysis based on Kin para-
metric images were also investigated. The properties
of these methods were compared with those of the
NLS method and Gjedde–Patlak graphical analysis
(GPGA), the latter of which is most commonly used
to estimate Kin for irreversible tracers. Finally, the
results of the preliminary applications of these
methods to [18F] flurodeoxyglucose ([18F]FDG) are
presented.

Materials and methods

Theory

Compartment model: The three-compartment model
(two-tissue compartment model) for irreversibly binding
radiotracers was assumed. Each compartment represents
the concentration of the unmetabolized radiotracer in
plasma (Ca, mCi/mL), free or nonspecifically bound radio-
tracer (Cf, mCi/g), and specifically bound radiotracer (Cb,
mCi/g), respectively. Differential equations for two-tissue
compartments (Cf and Cb) with irreversible binding can be
described by

dCf ðtÞ
dt

¼ K1CaðtÞ � k2Cf ðtÞ � k3Cf ðtÞ ð1Þ

dCbðtÞ
dt

¼ k3Cf ðtÞ ð2Þ

where the rate constants K1, k2, and k3 are defined as those
of delivery (mL/min/g), washout (per minute), and
forward uptake (i.e., phosphorylation of 18F-flurodeoxy-
glucose, forward receptor–ligand reaction for radioli-
gands; per minute). The total tracer concentration in
tissue VOI or region of interest can be obtained using the
following equation:

CTðtÞ ¼ Cf ðtÞ þ CbðtÞ þ VaCaðtÞ ð3Þ

where Va is the blood volume fraction in tissue (mL/g). It
should be noted that the factor Ca(t) in the above equation
stands for radiotracer concentration in whole blood,
although Ca(t) in Equation (1) is the concentration of

unmetabolized radiotracer in plasma. If the metabolite-
corrected input function is used to determine the blood
volume fraction, estimation errors associated with this
simplification should be considered.

Gjedde–Patlak graphical analysis: Although the
graphical methods are independent of particular model
structures, if a model structure describes the transfer
of a tracer, the slope of the linear equation may be related
to combinations of model parameters (Logan, 2000).
Gjedde–Patlak graphical analysis is the most widely
used conventional graphical method for irreversibly
binding tracers (Gjedde, 1981, 1982; Patlak et al, 1983).
In GPGA, the Equations (1) and (2) are rearranged
as to yield:

CT ðtÞ
CaðtÞ

¼ K1k3

k2 þ k3

R t
0 CaðtÞdt

CaðtÞ
þ k2

k2 þ k3

Cf ðtÞ
CaðtÞ

þ Va ð4Þ

Assuming that Cf(t) and Ca(t) reach equilibrium after some
time (equilibrium time t*) following tracer injection, the
second term on the right of the above equation is constant
and Kin can be estimated from the slope of a straight line.
One disadvantage of this method is that the time range for
the line fitting must be determined to estimate Kin. This is
especially undesirable when generating Kin parametric
images for radiotracers, which have regional differences in
terms of the time required to reach equilibrium.

Multiple linear analysis for irreversible radiotracer 1:
Changes in tissue concentration, dCT(t)/dt, are given by
adding (1), (2), and VadCa(t)/dt.

dCT ðtÞ
dt

¼ K1CaðtÞ � k2Cf ðtÞ þ Va
dCaðtÞ

dt
ð5Þ

By rearranging Equation (5)

Cf ðtÞ ¼
K1

k2
CaðtÞ þ

Va

k2

dCaðtÞ
dt

� 1

k2

dCTðtÞ
dt

ð6Þ

Substituting Equation (6) into Equation (3) and differen-
tiating yields

dCbðtÞ
dt

¼ dCT ðtÞ
dt

� K1

k2
þ Va

� �
dCaðtÞ

dt
� Va

k2

d2CaðtÞ
dt2

þ 1

k2

d2CT ðtÞ
dt2

ð7Þ

Therefore, Equation (2) can be written as Equation (8) by
substituting Equation (6) and (7) into Equation (2)

d2CTðtÞ
dt2

¼ Va
d2CaðtÞ

dt2
þ K1 þ k2Va þ k3Vað ÞdCaðtÞ

dt

� ðk2 þ k3Þ
dCT ðtÞ

dt
þ K1k3CaðtÞ ð8Þ

By integrating the above equation twice, the following
linear equation can be obtained (MLAIR1):

CT ðtÞ ¼ P1CaðtÞ þ P2

Zt

0

CaðtÞdtþ P3

Zt

0

CTðtÞdtþ P4

�
Zt

0

Zt

0

CaðsÞdsdt ð9Þ
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where the macro parameters P1BP4 are given by

P1 ¼Va

P2 ¼K1 þ k2Va þ k3Va

P3 ¼� ðk2 þ k3Þ
P4 ¼K1k3

ð10Þ

This equation is an extended version of the linear
equation developed by Blomqvist (1984). The incorpora-
tion of a vascular volume term in the above equation is an
additional feature. The generalized version of this equa-
tion, which is applicable to both reversible and irrever-
sible tracers, can be found in the literature (Evans, 1987;
Feng et al, 1996; Gjedde, 1995). The series of Equation (9)
for each sampling time point (t1, t2,y, tn) can be arranged
into the following matrix:

y ¼ Xh þ e ð11Þ

where y is a vector for the dependent variable, X the
matrix for the independent variables, h a vector for the
parameters to be estimated, and e is the equation error
term.

y � CT ðt1Þ CT ðt2Þ 	 	 	 CT ðtnÞ½ �T ð12Þ

X �

Caðt1Þ
Rt1

0

CaðtÞdt
Rt1

0

CTðtÞdt
Rt1

0

Rt
0

CaðsÞdsdt

Caðt2Þ
Rt2

0

CaðtÞdt
Rt2

0

CTðtÞdt
Rt2

0

Rt
0

CaðsÞdsdt

..

. ..
. ..

. ..
.

CaðtnÞ
Rtn

0

CaðtÞdt
Rtn

0

CTðtÞdt
Rtn

0

Rt
0

CaðsÞdsdt

2
66666666664

3
77777777775

ð13Þ

h � P1 P2 P3 P4½ �T ð14Þ

The estimate of h based on the linear least squares
criterion is given by the following equation:

ĥLLS ¼ ðXTXÞ�1XTy ð15Þ

The net accumulation rate Kin can then be acquired using
the following equation:

Kin ¼ K1k3

k2 þ k3
¼ �P4

P3
ð16Þ

The MLAIR1 Equation (9) has a desirable feature of
ordinary least squares estimations because only the
dependent variable CT(t) is noisy and the correlation of
the noise in the independent variables is minimal.

Multiple linear analysis for irreversible radiotracer 2:
Multiple linear analysis for irreversible radiotracer 1
would be a useful alternative to the GPGA because the
determination of a linear interval is not necessary.
However, the error propagation associated with the
division calculation on the macro parameters (Equation
(16)), to obtain Kin, is a possible limitation of MLAIR1
for the voxelwise estimations of Kin for the generation of

parametric images because of the high noise level in the
individual time–activity curves of each voxel. Therefore,
we also used a formula in which Kin could be directly
estimated from the coefficient of an independent variable.
By dividing both sides of Equation (9) by k2 + k3 and
rearranging the equation, we obtained the following
equation, which allows direct estimations of Kin from a
macro parameter without unstable division calculation.

Zt

0

CT ðtÞdt ¼ P
0

1

Zt

0

Zt

0

CaðsÞdsdtþ P
0

2

Zt

0

CaðtÞdt

þ P
0

3CaðtÞ þ P
0

4CTðtÞ ð17Þ

where the macro parameters are given by the following
equations and can also be obtained by linear least squares
estimation (MLAIR2).

P
0

1 ¼ K1k3

k2 þ k3
¼ Kin

P
0

2 ¼ K1

k2 þ k3
þ Va

P
0

3 ¼ Va

k2 þ k3

P
0

4 ¼� 1

k2 þ k3

ð18Þ

A general version of this formula for reversible tracers
has been suggested, as outlined in an abstract by
Blomqvist (1987), and derivations of similar equations
have been published in book form (equation 7.221 in
Gjedde, 2003). In the cases of MLAIR1 and MLAIR2, it is
not necessary to determine the period of linear fitting (as
is required for GPGA), because the entire dataset is used
for parameter estimation. Although MLAIR2 has the
desirable feature that the division calculation is not
required to obtain Kin, it is questionable how accurate
and precise Kin estimation by this method is, because one
of the independent variables, CT(t), may be noisy. This
should be avoided, if possible, because estimation by
linear regression analysis requires that all independent
variables be nonnoisy or nonrandom to obtain unbiased
estimates. Therefore, considering the pros and cons of
these methods, critical assessments of their statistical
properties in the Kin estimation should be performed to
understand the possible sources of erroneous results
produced using these methods and misinterpretation of
them, and to determine their possible application fields.
The following computer simulations and applications to
real PET data were performed for these reasons.

Computer Simulations

Noiseless total tissue time–activity curves (Equation (3))
were generated using the following analytic solution of the
irreversible two-tissue compartment model.

CT ðtÞ ¼
K1

k2 þ k3
CaðtÞ � k3 þ k2e�ðk2þk3Þt

h i
þ VaCaðtÞ ð19Þ

A metabolite-corrected plasma input function obtained
from a human [11C]MeNTI PET study involving

Quantification of irreversibly binding radiotracer
SJ Kim et al

1967

Journal of Cerebral Blood Flow & Metabolism (2008) 28, 1965–1977



intermittent arterial blood sampling for 90 mins was used.
K1, k2, and Va were fixed at 0.24 mL/min/g, 0.028
per minute, and 5%, respectively. Binding parameter
k3 was varied between 0.5 and 1.5 times the value of
k2 (Kin = 0.08 to 0.144 mL/min/g). Ratios of k3/k2 above
1.5 were not considered because the net uptake of
radiotracer does not increase linearly with k3, the para-
meter of interest, and is proportional to K1 (Koeppe et al,
1994). Gaussian noise with zero mean and following
variance was added to the ith frame of CT in order to
simulate noisy measurements (Feng et al, 1993; Logan et
al, 2001; Lee et al, 2005).

s2 ¼ aCT ðtiÞ=Dti ð20Þ
where CT(ti) and Dti are the radioactivity concentration
(mCi/g) and the duration (second) of the ith frame,
respectively. The scaling factor a that determines the
noise level varied from 0 (noiseless) to 1.0. For all possible
pairs of k3 and a, 10,000 realizations of noisy CT were
produced. Kin values were then estimated using NLS,
GPGA, MLAIR1, and MLAIR2, respectively, and coeffi-
cients of variation (CV), biases and errors of estimations
were calculated. Coefficients of variation, bias, and error
were defined as follows:

CV ¼ sðK̂inÞ
�Kin

�100ð%Þ ð21Þ

Error ¼

PN
n¼1

jK̂n
in � Kinj=Kin

� �

N
�100ð%Þ ð22Þ

Bias ¼

PN
n¼1

K̂n
in � Kin=Kin

� �

N
�100ð%Þ ð23Þ

where K̂in is an estimated parameter, Kin is a true value,
K̄in is the mean of estimates, and N is the number
of realizations. The initial values for unknown variables
in NLS were set equal to the true values of rate constants
to provide the most favorable condition for the NLS
estimation. Nonnegative constraints on estimates were
also used for the NLS estimation. In the high noise
condition, the division performed to obtain Kin in NLS
and MLAIR1 sometimes resulted in the physiologically
irrelevant estimate (i.e., a negative or excessive value).
Therefore, negative results were set to zero and values
higher than 0.5 mL/min/g were set to 0.5 to reduce the
adverse effects of values that deviated excessively from
the relevant range when assessing general statistical
properties.

Application to [11C]MeNTI Positron Emission
Tomography Data

Positron emission tomography data acquisition and
volume of interest analysis: To show the feasibility of the
proposed method, 90-min dynamic [11C]MeNTI PET data
were acquired from 15 extensively alcohol-dependent
subjects (before and after naltrexone, a nonselective

opioid receptor antagonist, treatment) and 8 healthy
volunteers, as described in a previous study (Weerts
et al, 2008), were retrospectively analyzed. [11C]MeNTI is
a specific d-opioid receptor agonist developed for PET
imaging (Lever et al, 1992; Madar et al, 1996), and it has
been shown that the irreversible two-tissue compartment
model is suitable for the kinetic modeling analysis of this
radioligand (Smith et al, 1999). Arterial blood concentra-
tions corrected for labeled metabolites were used as the
input function for kinetic analysis (Smith et al, 1999;
Weerts et al, 2008).

Regional time–activity curves for kinetic analysis were
obtained using an automated VOI method (Lee et al, 2004;
Lee and Lee, 2005). Static PET images were composed by
summing all frames in dynamic data and were spatially
normalized to the standard template of [11C]MeNTI
PET (Weerts et al, 2008) using SPM2 (Statistical
Parametric Mapping). To remove confounding effects
caused by mismatched anatomical variations within
subjects, PET data of same subjects were coregistered
before spatial normalization and the spatial normalization
parameters obtained from averaged coregistered images
were applied identically. By applying the transformation
parameters obtained using static images, all dynamic
frames were also spatially normalized into standard brain
space. Predefined probabilistic VOIs on brain regions of
interest with high or intermediate d-opioid receptor
density (basal ganglia, cingulate cortex, inferior and
middle frontal gyri, superior temporal gyrus, angular
gyrus, amygdala, hippocampus) and reference regions
with low receptor density (thalamus, cerebellum) were
applied to the dynamic images to extract regional time–
activity curves.

These curves were then analyzed using NLS, GPGA,
MLAIR1, and MLAIR2 to estimate Kin values. Whole-frame
data were used for NLS and MLAIR (MLAIR1 and
MLAIR2), but only the data obtained after t* was used
for GPGA. For GPGA, various t* values (10, 20, and
30 mins) were tried, and correlation analyses were
performed to explore the relationships between these Kin

values estimated using different methods. Regional dis-
tribution of Kin values estimated using each method was
also compared.

Voxel-based statistical analysis: Parametric images of Kin

were generated by the voxelwise applications of GPGA
and MLAIR to dynamic PET data. The parametric images
obtained were spatially normalized using the transforma-
tion parameters obtained above. Only Kin images by
MLAIR2 were used for voxel-based statistical analysis,
because MLAIR1 was not suitable for voxelwise computa-
tions, as shown in the next section. Voxelwise mean and
percent CV of Kin parametric images of eight healthy
volunteers were compared in terms of the image quality
and magnitude of variance.

The plausibilities of voxelwise statistical analysis of Kin

parametric images using GPGA and MLAIR2 were also
compared in terms of their compatibility with the
established results and statistical power to detect the
changes of Kin. Spatially normalized parametric images
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were smoothed using an isotropic 3D Gaussian filter with
a 16 mm full width at half-maximum. To remove the
effects of global differences in Kin among individuals, each
voxel value of parametric images was normalized versus
regional mean value in the thalamus or cerebellum, which
showed the lowest specific biding of [11C]MeNTI PET
(Smith et al, 1999; Weerts et al, 2008). Changes in regional
Kin after naltrexone treatment in alcohol-dependent sub-
jects were then assessed by voxelwise paired t-testing and
compared with published results based on VOI analysis
(Weerts et al, 2008).

Preliminary Application to [18F]FDG Positron
Emission Tomography Data

To show the feasibility of the proposed method for
[18F]FDG, the most commonly used 18F-labed PET tracer,
parametric images of Kin were generated from the dynamic
brain PET data of a 22-year-old male volunteer acquired
during our previous study (Kim et al, 2000).

Results

Computer Simulation

In Figure 1, the bias, error, and CV of the estimation
of Kin for simulated noiseless and noisy tissue time–
activity curves, with different levels of receptor
availability (k3/k2 = 0.5B1.5), were plotted versus
noise level (a= 0 to 1.0). As GPGA results were
dependent on the assumed equilibrium time (or the
range of line fitting), we used data that produced
best results (fitting range: 10 to 90 mins).

Generally, NLS (solid line in Figure 1) showed
good statistical properties: almost no bias, smallest
errors, and moderate CV levels. However, it should
be noted that initial values for NLS estimation were
set equal to true estimates to provide the most
favorable condition for the NLS estimation. Thus,
we focus on comparisons of simulation results for
MLAIR and GPGA in the following paragraphs.

MLAIR1 (dotted line) showed almost no bias for
Kin estimations for noiseless data (Figure 1A). As the
noise level increased, receptor density decreased
and bias became larger in the negative direction.
However, degree of bias was smaller than those of
the other linear methods. Multiple linear analysis
for irreversible radiotracer 2 (dashed line) showed
positive bias, which also increased with noise level
and decreased with receptor density. The degree of
bias in the low noise condition was smaller than that
for GPGA (dash-dot line), which showed a consis-
tent negative bias regardless of noise level, but
higher than that for GPGA under high noise
conditions.

Both MLAIR1 and MLAIR2 showed negligible
percent errors for Kin estimations for noiseless data
(Figure 1B). Multiple linear analysis for irreversible
radiotracer 1 had a smaller error than the other
linear methods under low noise conditions, but this

error increased rapidly as noise levels increased.
Although MLAIR2 had lesser errors than the other
linear methods for high receptor density, errors
increased as receptor density decreased. Gjedde–
Patlak graphical analysis showed relatively consis-
tent errors regardless of noise level.

Coefficients of variation for Kin estimations
were highest for MLAIR1 and lowest for MLAIR2
(Figure 1C). Coefficient of variationV values
obtained by MLAIR2 were less than 10% regardless
of the receptor density and noise level, whereas
those obtained by MLAIR1 increased rapidly as the
noise level increased.

Application to [11C]MeNTI Positron Emission
Tomography Data

Volume of interest analysis: Figure 2 shows correla-
tions between Kin values estimated using each linear
method and using NLS for regional time–activity
curves on 10 VOIs. All data obtained from healthy
volunteers and alcohol-dependent subjects (before
and after naltrexone treatment) were included to
examine the consistencies of correlations across a
wide range of Kin. Although Kin values estimated
using GPGA were well correlated with NLS values
(r = 0.92 to 0.97), the slope of the regression line was
dependent on the duration of line fitting and
increasing the start time of fitting diminished the
correlation (Figure 2A).

Figure 2B shows that Kin values estimated using
MLAIR1 were almost identical to those estimated
using NLS (r = 0.99). This result shows that MLAIR1
can provide an unbiased solution relative to NLS
estimations for data with low noise levels without
requiring initial estimates of rate constants and
without the risk of falling into the local minima of
the cost function for parameter estimation. Although
the correlation for NLS was poorer with MLAIR2
than with MLAIR1, correlation coefficient was
similar to best GPGA results (Figure 2C). The small
value of the y-intercept of the regression line
(0.005 mL/min/g) also shows that the bias of Kin in
the low receptor density region was minimal.

Figure 3 shows the regional distributions of the
Kin estimates in the alcohol-dependent subjects
before and after treatment. Higher regional Kin

estimates by MLAIR2 than for the other methods
were observed in all regions included in the VOI
analysis. However, all methods led to identical
findings, that is, Kin values were reduced by
naltrexone, which reflected the displacement of
d-opioid receptors by naltrexone.

The ranking of mean regional Kin estimates
using MLAIR1 across brain regions (Figure 3B)
was almost identical to those using the
NLS (BG > Cr >y> Th > Cerb; Figure 3A). Although
MLAIR2 showed ranking alternations between
some regions of intermediate receptor density
(STgBMFg; Figure 3C), an identical trend was
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observed for GPGA (Figure 3D). In addition, differ-
ences between the Kin values of these regions were
not significant relative to variances in regional Kin

values.

Parametric images: The parametric images of Kin

values generated using GPGA or MLAIR are shown
in Figure 4. Voxels with Kin values of < 0 or > 0.25
(much higher than those obtained by VOI analysis)
were reset to marginal values that corresponded to
physiologically relevant ranges. Gjedde–Patlak gra-

phical analysis parametric images with different
fitting ranges showed different image qualities
(Figures 4A–4C). Figure 4D shows a MLAIR1
parametric image. Many voxels both inside and
outside the brain showed extremely high Kin values,
which resulted in significant salt-and-pepper noise
in parametric images displayed using a relevant
dynamic range of Kin. However, MLAIR2 parametric
images (Figure 4E) showed remarkable image quality
as compared with GPGA and MLAIR1 parametric
images. No voxel showing an abrupt intensity
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Figure 1 Plots of (A) biases, (B) errors, and (C) coefficients of variation (CV) for the estimation of Kin versus noise level (a) from
simulated time–activity curves for high (left column), intermediate (middle), and low (right) receptor density regions (k3/k2 = 1.5,
1.0, and 0.5, respectively). NLS: solid line; MLAIR1: dotted; MLAIR2: dashed; GPGA: dash-dot.
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Figure 2 Correlations between regional Kin values as determined using different methods and VOI data. (A) GPGA (GPGA10,
GPGA20, and GPGA30: t* = 10, 20, and 30 mins, respectively) versus NLS. (B) MLAIR1 versus NLS. (C) MLAIR2 versus NLS.
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Figure 3 Means and s.d. of regional Kin values of [11C]MeNTI estimated using the various methods: distribution across brain regions
and comparison between different conditions. (A) NLS; (B) MLAIR1; (C) MLAIR2; (D) GPGA (range: 10 to 90 mins). BG: basal
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Quantification of irreversibly binding radiotracer
SJ Kim et al

1971

Journal of Cerebral Blood Flow & Metabolism (2008) 28, 1965–1977



change was observed and regional differences in Kin

values shown by VOI analysis were illustrated well.
Moreover, contrast between gray and white matter
was also much better than those of the other
methods.

The images in Figure 5 are voxelwise representa-
tions of mean (A: GPGA 10 to 90 mins, B: MLAIR2)
and percent CV (C: GPGA, D: MLAIR2) of Kin

parametric images obtained from eight healthy
volunteers. Multiple linear analysis for irreversible
radiotracer 2 data showed less noisy intensity
distribution in mean image (Figure 5B) and lower
levels of inter-subject variability (Figure 5D). These
superior properties of MLAIR2 over GPGA were
most distinct in the thalamus and cerebellum which
have the low level of receptor density.

Voxel-based statistical analysis: The improved
properties of MLAIR2 (shown in Figures 4 and 5)
led to greater statistical power for voxelwise com-
parisons than the GPGA method. Figure 6 shows
brain regions showing significant decreases of Kin

after nalrexone in alcohol-dependent subjects in the
voxelwise paired t-testing. The analyses were con-
ducted using the Kin parametric images composed
using GPGA (A) or MLAIR2 (B), respectively, and

after normalization to the thalamus. Clusters of
> 100 voxels at the level of P < 0.001 (uncorrected
for multiple comparisons) and P < 0.05 (corrected
based on familywise error) are illustrated in this
figure. Multiple linear analysis for irreversible
radiotracer 2 clearly shows a significant decrease
of Kin in wide cortical regions even after applying
the strict significant criterion. No voxel with
significant increase after treatment was found with
the same thresholds. Analyses using normalized
parametric images to the cerebellum produced
equivalent results.

Application to [18F]FDG Positron Emission
Tomography Data

Figure 7 shows the parametric images of Kin values
of [18F]FDG data generated using GPGA and
MLAIR2, and also shows the improved noise
properties of MLAIR2 over GPGA.

Discussion

Graphical methods have been commonly used
to generate parametric images because of their
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Figure 4 Kin parametric image of [11C]MeNTI obtained from a healthy volunteer using the various methods. (A) GPGA (range: 10 to
90 mins). (B) GPGA (range: 20 to 90 mins). (C) GPGA (range: 30 to 90 mins). (D) MLAIR1. (E) MLAIR2.
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computational simplicity and model independence.
Logan graphical analysis (Logan et al, 1996) is
renowned for estimating distribution volumes or
the binding potentials of reversibly binding radi-
oligands. However, this method has a recognized
problem concerning biased parameter estimations
for noisy data (Logan et al, 2001), and resultantly,
several approaches have been proposed to reduce
this bias. These approaches include generalized
linear least squares (Logan et al, 2001), total least
squares (Varga and Szabo, 2002), linear integration
(Carson, 1993), and multiple linear regression
(Ichise et al, 2002). Another weakness of simple
graphical analysis concerns the uncertainty of

estimated parameters associated with arbitrary de-
terminations of equilibrium periods. Considerations
of the interindividual and interregional variabilities
in equilibrium time (or period) are particularly
irksome when calculating parametric images,
because of the huge number of data sets that must
be analyzed.

GPGA is the analog of Logan graphical analysis for
the irreversibly binding radiotracers, and has similar
limitations. However, few systematic investigations
have been undertaken to overcome these limitations
of GPGA, although various compensational
approaches are available for Logan graphical analy-
sis. Therefore, in this study, we used two MLAIR
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Figure 5 Voxelwise representation of mean (A, B) and % coefficients of variation (C, D) of Kin parametric images of [11C]MeNTI
obtained from eight healthy volunteers. (A, C) GPGA (range: 10 to 90 mins). (B, D) MLAIR2.
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Figure 6 Brain areas with decreased Kin of [11C]MeNTI during naltrexone treatment relative to baseline in alcohol-dependent subjects
(n = 15): voxelwise paired t-test (upper row: uncorrected P < 0.001, lower row: corrected P < 0.05). (A) GPGA (range: 10 to
90 mins). (B) MLAIR2.
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Figure 7 Kin parametric image of [18F]FDG of a healthy volunteer using (A) GPGA (range: 10 to 60 mins), (B) GPGA (range: 20 to
60 mins), and (C) MLAIR2.
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methods and investigated their properties and
utilities, and we finally reached the conclusion that
they have several strengths over GPGA.

As whole-data samples are used for MLAIR
estimations, no equilibrium time or linear region
must be imposed on data. They require similar
amounts of computation time as GPGA, but have
better bias properties than GPGA. By computer
simulation, bias levels for Kin estimations using
MLAIR1 for high or intermediate receptor density
regions were compatible to those of NLS estimations
performed with ideal initial values, although GPGA
and MLAIR2 showed nonzero bias even with
noiseless data. Biases for low receptor density
regions also did not exceed 10%. In addition,
MLAIR1 estimates for real PET data showed a strong
correlation with NLS estimates (Figure 2B). This
method has excellent bias properties mainly
because all independent variables are almost noise-
less (Ca and the single or double integrals of Ca and
CT), and only the dependent variable (CT) is noisy
(Equation (9)).

However, MLAIR1 showed a high level of un-
certainty for Kin estimations for highly noisy data,
mainly because a division operation on estimated
macro parameters is required to obtain the Kin value.
Therefore, we suggest that MLAIR1 is the method of
choice for the VOI analysis of noiseless or low-noise
data, but that it is inadequate for the analysis of
noisy time–activity curves from individual voxels.
In addition, it should be noted that MLAIR1 can
provide a parametric map of tracer delivery K1 if the
blood volume fraction is negligible (P2EK1; Blomqvist,
1984). This information is valuable for many tracers,
for example, labeled compounds with transport
mechanism.

The results of this study indicate that MLAIR2 is
more relevant for parametric image generation
rather than MLAIR1, and that it has better
statistical properties than the GPGA. The MLAIR2
equation (Equation (17)) was derived so that Kin

is obtained directly from macro parameters
estimated by multiple linear regression, which leads
to a stable and robust estimation of Kin (in terms
of its variability) even in noisy environments. In
fact, its CV was < 6% even for highly noisy data
from low receptor density regions in the computer
simulation.

However, the inclusion of CT in independent
variables could not be avoided in this modification
(MLAIR2), which resulted in increased bias of Kin

estimations. Nevertheless, despite this bias shown
in computer simulations and real PET data, MLAIR2
estimates correlated well with NLS estimates (Fig-
ure 2C). Furthermore, the relative distributions of
Kin values estimated using MLAIR2 under different
conditions and across different regions were not
different from those estimated using the other
methods (Figure 3), indicating that MLAIR2 is a
valid quantification method for comparative studies
based on VOI data and/or parametric images.

The merits of the improved parametric images
obtained using MLAIR2 were well illustrated by
voxel-based statistical analyses. Regional changes of
Kin values after naltrexone treatment in the alcohol-
dependent subjects well matched the results ob-
tained using VOI data. Multiple linear analysis for
irreversible radiotracer 2 also showed much higher
statistical power for voxelwise comparisons than
GPGA (Figure 6). Further investigations of methods
of regularization to improve the bias property of
MLAIR2 without compromising its robustness for
parameter estimation will undoubtedly augment the
advantageous features of MLAIR2 when parametric
images are used. A possible approach might be to
use the total least squares method, which provides
more consistent estimates in linear models, with the
presence of errors in both dependent and indepen-
dent variables than ordinary least squares (Varga and
Szabo, 2002). Noise reduction in tissue time–activity
curves using wavelet filtering or principle compo-
nent analysis would also be useful (Millet et al,
2000; Joshi et al, 2008).

Multicollinearity is a common problem when
multiple linear analysis methods are applied to
tracer kinetics, because all dependent and indepen-
dent variables used are derived from the tissue
time–activity curve or arterial input function. In this
situation, some of these variables are so highly
correlated that the reliable estimations of individual
regression coefficients are difficult. Variances of
parameter estimates are usually inflated by this
linear dependency (Myers, 1990). Further investiga-
tions on the covariance structure of MLAIR methods
and possible ways of overcoming this problem using
sophisticated statistical methods, such as, ridge
regression, are required (Hoerl and Kennard, 1970).

Although radiolabeled ligands that bind reversi-
bly to certain receptors during scan periods are
preferred for in-vivo receptor–ligand assay based
on PET or single photon emission computed
tomography (SPECT), irreversible [11C]MeNTI, which
selectively binds to d-opioid receptors, is currently
the only approved PET tracer for human adminis-
tration. [11C]MeNTI has a desirable property as an
irreversible tracer concerning the simplicity of
quantifying receptor–ligand binding, that is, the
lumped parameter Kin is approximately proportional
to k3 (Bmaxkon), the rate constant of primary interest
when kinetics are irreversible, because it has
moderate k3/k2 ratio (Koeppe et al, 1994; Smith
et al, 1999). However, voxelwise calculations of Kin in
[11C]MeNTI PET studies using conventional meth-
ods suffer from severe noise levels in parametric
images (Figure 4), because of regional differences
between times required to reach equilibrium and a
short radioisotope half-life (Smith et al, 1999).
Nevertheless, MLAIR2 showed much better proper-
ties than GPGA for voxelwise parameter estimations
and statistical analyses using [11C]MeNTI PET data,
and should be useful for investigations on central
d-opioid receptor systems.
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Improvements in parametric image quality are not
limited to noisy dynamic 11C PET data. Although we
have not accumulated a sufficient amount of data
yet, our preliminary studies on [18F]FDG brain
(Figure 7) and 18F skeletal PET (Kim et al, 2007)
data show that efficient and robust parametric
imaging of glucose and fluoride influx rates is also
possible using MLAIR2. Further investigations
using other radiotracers with irreversible binding
or uptake are warranted.

Although Kin is proportional to k3 given suitable
k3/k2 ratios, it is also dependent on the blood–flow-
mediated parameter K1. Therefore, direct assessments
of k3 are also important for kinetic studies on
irreversible tracers. Because the division operation
must be performed to obtain k3 from both MLAIR1
and MLAIR2 macro parameters, there may be a
similar problem of uncertainty concerning parameter
estimations using the present versions of the MLAIR
algorithms. Therefore, modification of the model
equations for the direct measurement of k3 without
the division operation should also be explored.

Wong et al (1986, 1997) presented a graphical
means of estimating k3 for irreversibly binding
dopamine D2 ligand 3-N-[11C]methylspiperone in
a similar manner to GPGA. According to this
approach, tissue and plasma ratios are fitted to a
combination of linear and mono-exponential func-
tions of normalized time integral of plasma input
function. This approach has the advantage of using
entire time–activity curves and of providing a
graphical representation of binding rate, but re-
quires nonlinear curve fitting and combinations of
multiple parameters to obtain k3.

In summary, the characteristics of multiple linear
analyses of radiotracers with irreversible kinetics
were explored by simulation and using real PET
data. The devised MLAIR1 and MLAIR2 methods
were found to be computationally efficient and
showed good correlations with parameters esti-
mated using the standard NLS method. Multiple
linear analysis for irreversible radiotracer 1 showed
unbiased parameter estimations but high levels of
uncertainty for noisy data, and thus, would be
useful for VOI-based data analysis. In addition,
we suggest that MLAIR2, which showed lowest
parameter estimating variabilities, is suitable for
voxel-based data analysis.
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