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Abstract
Although the ordered subset expectation maximization (OSEM) algorithm does
not converge to a true maximum likelihood solution, it is known to provide a
good solution if the projections that constitute each subset are reasonably
balanced. The Compton scattered data can be allocated to subsets using
scattering angles (SA) or detected positions (DP) or a combination of the two
(AP (angles and positions)). To construct balanced subsets, the data were first
arranged using three ordering schemes: the random ordering scheme (ROS), the
multilevel ordering scheme (MLS) and the weighted-distance ordering scheme
(WDS). The arranged data were then split into J subsets. To compare the
three ordering schemes, we calculated the coefficients of variation (CVs) of
angular and positional differences between the arranged data and the percentage
errors between mathematical phantoms and reconstructed images. All ordering
schemes showed an order-of-magnitude acceleration over the standard EM, and
their computation times were similar. The SA-based MLS and the DP-based
WDS led to the best-balanced subsets (they provided the largest angular and
positional differences for SA- and DP-based arrangements, respectively). The
WDS exhibited minimum CVs for both the SA- and DP-based arrangements

9 Author to whom any correspondence should be addressed.

0031-9155/10/175007+21$30.00 © 2010 Institute of Physics and Engineering in Medicine Printed in the UK 5007

http://dx.doi.org/10.1088/0031-9155/55/17/009
mailto:jaes@snu.ac.kr
http://stacks.iop.org/PMB/55/5007


5008 S M Kim et al

(the deviation in mean angular and positional differences between the ordered
subsets was smallest). The combination of AP and WDS yielded the best
results with the lowest percentage errors by providing larger and more uniform
angular and positional differences for the SA and DP arrangements, and thus,
is probably optimal Compton camera reconstruction using OSEM.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Current techniques for single-photon imaging in nuclear medicine rely on mechanical
collimation to form projection data of the source distribution. Unfortunately, however, the
performance of mechanical collimators suffers from a difficulty due to the inverse relationship
between detection efficiency and spatial resolution. In contrast, since a Compton camera
provides directional information on incoming photons without mechanical collimation based
on the relationship between energy transfer and the Compton scattering angle (SA) of gamma
rays in a detector, detection efficiency and spatial resolution are no longer bounded by the
inverse relationship.

A typical Compton camera system consists of two detectors: a position-sensitive
detector with high-energy resolution and a second position-sensitive detector with low-energy
resolution (LeBlanc et al 1999, Yang et al 2001, Lee et al 2005, Lee and Lee 2006, An et al
2007, Seo et al 2008). Valid events are recorded when the photons that reach the first detector
are Compton scattered and then totally absorbed in the second detector. The SA increases as
a function of the energy deposited in the scatterer. Furthermore, since the directions of the
scattered photon are determined by the two detected positions (DPs) in the scatterer and the
absorber, the incident directions of emitted photons onto the scatterer can be computed within
a conical surface of ambiguity as shown in figure 1(a).

Since information from the Compton camera only concerns the incident gamma ray
direction on the conical surface, an inversion method is needed to reconstruct the source
distribution. Various methods have been proposed to reconstruct the three-dimensional (3D)
source distribution from Compton scattered conical projection data. An extensive overview
of existing reconstruction algorithms for a Compton camera is provided in Smith (2005). Due
to computational limitations, many algorithms are based on direct analytical methods rather
than being based on statistical methods that are usually performed in iterative reconstruction
schemes. The simplest reconstruction method is the backprojection of all measured data
into the image space through the conical surfaces. The simple backprojection method,
however, results in the loss of high-frequency components such as the edges of objects in
the reconstructed images. Parra and other researchers investigated the use of series expansion
methods in the spherical harmonic domain to directly reconstruct Compton scattered data
(Basko et al 1998, Parra 2000, Tomitani and Hirasawa 2002, Hirasawa and Tomitani 2003).
In these algorithms, however, the noise properties in measured data due to the randomness of
emission and detection process cannot be incorporated in the reconstruction procedure (Smith
2005, Qi and Leahy 2006). In this paper we note that, although analytical reconstruction
methods for Compton imaging may be useful for achieving reconstructions in clinically
acceptable time, statistical methods, such as maximum likelihood expectation maximization
(ML-EM or EM) and maximum a posteriori (MAP) approaches, which have been proven to
be useful for conventional emission computed tomography (ECT), have great potential for
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Figure 1. (a) A configuration of a typical Compton camera and representation of the conical
ambiguity (ω is a SA, and m and n are the DPs in the scatterer and the absorber, respectively).
(b) The conical surface integral calculated using the ray-tracing method. (c) The azimuthal and
the polar angles, θ and ϕ, in spherical coordinates.

improving quantitative accuracy in Compton camera reconstruction (Hebert et al 1990, Sauve
et al 1999). In fact, although the current application of EM reconstruction to Compton imaging
may be a difficult problem due to computational limitations, increases in computer speeds are
sure to have a practical impact.

We note particularly that the well-known ordered subset (OS) principle in tomographic
image reconstruction is an algorithmic acceleration method that achieves faster convergence
rates than non-OS statistical reconstruction algorithms. The standard EM algorithm uses the
estimation of all projections and calculates the ratios between estimated and measured values
for all projections during the backprojection process, whereas the OSEM algorithm first
subdivides projection data into several subsets and then progressively processes each subset
of projections by calculating projection and backprojection during each iteration (Hudson and
Larkin 1994). As the OS level (number of subsets) increases, the OS procedure accelerates
convergence by a factor proportional to the OS level. We also note that no systematic study
of OSEM has contributed to a significant computational improvement for Compton cameras,
although previously OS reconstruction has been applied to the 3D problem of Compton imaging
based on splitting list-mode data into a number of subsets. However, these reconstructions do
not demonstrate faster convergence rates than non-OS algorithms (Kragh 2002).

Since the form of the EM algorithm is the same for all emission imaging systems, the
EM algorithm for Compton camera reconstruction can also be implemented with the familiar
procedure for conventional ECT. However, the OSEM procedure used for Compton camera
reconstruction is quite different from that used for conventional ECT, such as single photon
emission computed tomography (SPECT) or positron emission tomography (PET), because
grouping the Compton scattered data into OS is determined by both SA and DP pairs in the
scatterer and the absorber. In this paper, we focus on the development of efficient methods
for grouping Compton scattered conical projection data into OS. The remainder of the paper
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formulates the OSEM algorithm for Compton camera reconstruction, describes the details on
how to construct OS and presents our experimental results.

2. Materials and methods

2.1. OSEM reconstruction algorithm

Recently, emphasis has been placed on accelerating iterative tomographic reconstruction
methods that can produce an image with less iteration than the EM algorithm. In terms
of the problem of ECT image reconstruction, the OSEM algorithm, proposed by Hudson
and Larkin (1994), has been successful at accelerating the existing EM algorithm, and is
continually increasing in its popularity. This is presumably due to the fact that while retaining
the advantages of the existing EM algorithm, such as the accurate modeling of any type of
system, OSEM provides an order-of-magnitude acceleration over EM.

Since the scheme of the EM algorithm is the same for all emission imaging systems, the
EM algorithm for Compton camera reconstruction can be implemented using the procedure
used for conventional ECT (Hebert et al 1990, Shepp and Vardi 1982, Lange and Carson
1984). In fact, the principle of OS can be applied to any algorithm that involves the calculation
of a sum over projection indices; an OS version of the algorithm can be obtained by replacing
the sums over all projection indices with sums over subsets (or blocks) of data. For a Compton
camera, projection indices indicate the locations of DP pairs in the scatterer and the absorber,
and SA. Therefore, for constructing subsets, the projection data can be grouped according to
the DP pairs and the SA indexed by m, n and ω.

In this paper, we consider three different ways of grouping the projection data into OS.
The first involves grouping data according to a pre-set order of SA. The second involves
grouping the possible combinations of DP pairs in the scatterer and the absorber, and the third
involves combining the first and second methods (referred to as AP (angles and positions)).
The outline for OSEM applied to Compton camera reconstruction is then as follows:

For each iteration k = 0, . . . , K − 1
For subsets grouped by scheme 1 a = 0, . . . , A − 1

For subsets grouped by scheme 2 b = 0, . . . , B − 1
· j = (a × B) + b

· j th subset Sj = (Sa, Sb) = {m, n, ω}
· Projection: g

(k,j)
mnω = ∑

i Hi;mnωf
(k,j)

i

· Backprojection:
∑

mnω Hi;mnω
gmnω

g
(k,j)
mnω

· Update voxels using f
(k,j+1)

i = f
(k,j)

i∑
mnω Hi;mnω

∑
mnω Hi;mnω

gmnω

g
(k,j)
mnω

END
END

END

In the above procedure, fi is the ith voxel value in the 3D reconstructed image, and gmnω

are the detected counts at the projection bin indexed by (m, n, ω). Hi;mnω is an element of the
system matrix that represents the probability that a photon emitted from the ith voxel will hit
the detector bin indexed by (m, n, ω). The grouping schemes 1 and 2 stand for the SA-based
scheme and the DP-based scheme, respectively. One can choose either one of these two
schemes or both. When both schemes are combined (AP) as shown above, the total number
of subsets used becomes A × B.



OSEM algorithm for a Compton camera 5011

Figure 2. The outline of the procedure used for constructing subsets according to SA and DP
pairs.

2.2. Subset construction methods

In the OSEM algorithm, subsets are usually chosen in a balanced way such that voxel activity
contributes equally to any subset. Because it is best to order the subsets such that two adjacent
indices for projection angles in a given subset correspond to the actual angles of the maximum
angular distance (Hudson and Larkin 1994), we used this strategy for our conical projection
data formed by the locations of DP pairs and SA.

The AP scheme, which is a method that combines both SA- and DP-based subset
construction methods, is explained diagrammatically in figure 2. Using the measured SA
and DP pairs, the conical projection data gmnω were divided into J well-balanced subsets.
Each projection index, ω (= 1, . . . , �), m (= 1, . . . , M) and n (= 1, . . . , N), was separately
ordered and split into L groups through STEP-1 and STEP-2 in figure 2. (The manner in
which projection index is ordered will be explained in the next section.) Additional possible
combinations of two groups relating to the DPs m and n were performed to construct B DP
group pairs {(m, n)}b;b = 1, . . . ,B (STEP-3 in figure 2). Finally, as shown in STEP-4, J (=A×B)
subsets were constructed as the possible combination of A SA group {ω}a;a = 1, . . . ,A and B DP
group pairs {(m, n)}b;b = 1, . . . ,B. For example, the j th subset Sj contains all conical projection
data indexed by (x, y, z) for (x, y) ∈ {(m, n)}b and z ∈ {ω}a.
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In the SA scheme, indexing the conical projection data by using SA is similar to indexing
parallel projection data using projection angles for conventional ECT. When the conical
projection data are sorted only according to SA, two adjacent indices in a given subset
correspond to the actual angles with the maximum angular distance. In the SA-based procedure
used to group the conical projection data into OS, the number B of DP group pairs is set to one,
and STEP-1 is skipped for m and n. The number of subsets J corresponds to the SA-group
number A, and after STEP-4 in the SA scheme, the j th subset contains the projection data
representing all possible DPs and {ω}j, which is reorganized through STEP-1 to STEP-4.

An incident angle on the detector could be determined by the axes connecting the DPs m
and n in the scatterer and the absorber as well as the SA. In the DP scheme, similar to the SA
scheme, the SA-group number A is set to one and STEP-1 for ω is skipped. Through STEP-1
and STEP-2 in figure 2, the DPs m and n were aligned separately according to the ordering
scheme, which will be explained later, and then divided into C and D groups, respectively.
J is the same as the DP-group pair number B, which is a combination number of C×D. The
j th DP-based subset consisted of the projection data representing all measurable SA and
{(m, n)}j.

2.3. Order selection schemes for subset construction

In contrast to the EM algorithm, the OSEM algorithm back-projects iteratively the error
between measured and estimated projection data in a subset into the image space to update
voxel intensity. Accordingly, the quality of a reconstructed image is affected by the projection
data chosen to construct a subset, which is related to the ordering scheme used. Thus, we
compared three different ordering schemes to construct subsets that are balanced in such a
way that voxel activity contributes equally to any subset: random ordering scheme (ROS),
multilevel ordering scheme (MLS) and weighted-distance ordering scheme (WDS).

In the ROS, the projection data (the set of cones determined by DP pairs and SA) were
randomly chosen from the unselected cones using a random number generator with a uniform
distribution. The selected order through the ROS is fixed during OSEM reconstruction. Since
the angular or positional distance determined by the ROS differs each time, it does not offer a
reproducible means of obtaining OSEM results.

In the MLS, ordering is related to the levels L = 1, 2, . . . , log2M, where M is the total
number of cones to be ordered (Guan and Gordon 1994). At each level L, new cones were
determined by adding M/2L to all indices of the chosen cones at previous levels (<L). The
MLS is a traditional method used in OSEM for the ECT system, and is regarded as a proper
scheme for ordering data according to angles.

The WDS is another method that was proposed to construct optimal subsets in the OSEM
algorithm for SPECT or PET (Mueller et al 1997). According to this scheme, a new cone
is chosen that has the maximum distance from the previously chosen cones, as shown in
figure 3. The greater distance between the cones indicates that the cones can cover the wider
field-of-view to be reconstructed. In the Compton camera, we can define two different types
of distances: angular and positional distances. The angular distance is the difference between
the SA of two cones. Similarly, the positional distance is the difference between the detection
positions, which determine the axes of the cones. As shown in figure 3, the WDS calculates the
weighted mean of repulsive force and the standard deviation (SD) of the distances between the
cones selected previously in set B and the newly selected cone from set A through STEP-1 and
STEP-2. The repulsive forces in the SA and DP grouping schemes are inversely proportional
to the angular and positional distances, respectively. Different weights are applied to the
pre-selected cones in set B. Finally, by minimizing the weighted mean and SD of repulsive
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Figure 3. Summary of the WDS to align projections according to SA or DPs.

forces between cones indexed by p and q (STEP-3), the WDS can rearrange set A into set B,
which provides the maximum mean distance between the cones.

2.4. System matrix

In our model of the Compton camera, each element Hi;mnω of the system matrix was factorized
into two components: the belonging probability P(m, n|i, ω) of the ith voxel on the conical
surface, defined by (m, n, ω), and the Compton scattering probability P(ω) of the SA ω, as
given by

Hi;mnω ≈ P(m, n|i, ω)P (ω). (1)

The probability P(ω) in the above equation is the differential cross-section for the Compton
scattering interaction with matter. In this study, this probability was expressed using the
Klein–Nishina formula based on the assumption that the electrons were at rest (Weinberg
1995). Because the differential cross-section is a function of the SA ω, P(ω) can be calculated
using the ratio of the corresponding area of the sampled range for a discrete SA ω to the total
area under the curve.

The belonging probability P(m, n|i, ω) was approximated to the intersecting length of
the voxel and the sampled rays passing through the apex on the conical surface using a ray-
tracing method (Kim et al 2007), as shown in figure 1(b). In order to sample a given conical
surface into rays, we first defined a reference cone (RC) with the same SA as a given cone.
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Figure 4. The Compton camera system with three detector pairs of the scatterer and the absorber
used for simulation purposes.

The apex and the conical axis of the RC were placed on the origin and the x-axis of the
image space, respectively. The circumference of the base of the RC was then evenly sampled.
The total number of sampled points (sn in figure 1(c)) on the circumference was fixed at 120.
The sampled points on the circumference were transformed using the interaction position
on the scatterer and the rotating angles θ and ϕ. The rotating angles θ and ϕ are the polar
angle from the z-axis and the azimuthal angle in the xy-plane from the x-axis in spherical
coordinates, respectively. θ and ϕ were determined using the direction vector of the axis of a
given cone. Finally, the sampled rays on the given conical surface were obtained by connecting
the apex of the given cone and the transformed sampled points on the base circumference of
the RC. Using Siddon’s method (Siddon 1985), the intersecting lengths of voxels and the
sampled rays on the given conical surface were efficiently calculated.

2.5. Experimental conditions

In this study, to alleviate the limited-angle problem involved in a typical Compton camera
system, which consists of a single detector pair, we designed a Compton camera system
consisting of three detector pairs perpendicular to each other, as shown in figure 4. Each
detector pair was placed on the x-, y- and z-axes with a radial offset of 10 cm from the center
of the image space. The distance between the scatterer and the absorber for each detector
pair was 5 cm. The measured data were binned according to DPs and SA. The DPs in the
scatterer and the absorber were sampled into 16 × 16 discrete positions, and the areas of
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(a) (b) (c)

Figure 5. The xy-, yz- and xz-central planes of the original six-cylinder phantom, and EM
reconstructions for data obtained using single (1-DIR) and triple (3-DIR) detector pairs: (a) six-
cylinder phantom, (b) 1-DIR geometry and (c) 3-DIR geometry.

detector elements on both detectors were 3.125 × 3.125 mm2. The SA of the incident photon
at the scatterer were grouped into 32 discrete angles between 10◦ and 90◦.

We used two mathematical phantoms, a six-cylinder phantom and a uniform cubic
phantom, as shown in figures 5 and 8, respectively. The six-cylinder phantom, which is
a cylinder with a diameter of 8.4 cm and a length of 5 cm, contained five cylinders with
various diameters and voxel values. The uniform cubic phantom had a width and a height of
5 cm each, and it was uniformly distributed with a value of 1. Both phantoms were located at
the center of a 10 × 10 × 10 cm3 3D image space. The image space was represented using
a 64 × 64 × 64 (voxel) image matrix and a voxel size of 1.56 × 1.56 × 1.56 mm3. The
three directional projection data of the two phantoms emitting gamma rays of 511 keV were
obtained from our projector modeled for a Compton camera.

We implemented the OSEM algorithms with nine different combinations of three subset
constructions and three ordering schemes with an OS level of 16 and an iteration number
of 16. For example, the 16 DP-based subsets were constructed using combinations of four
pre-defined position groups in the scatterer and four groups in the absorber, as described
in STEP-3 of figure 2. In the case of the AP-based scheme, the subsets were formed by
all possible combinations of four (scatterer) and two (absorber) position groups and two SA
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Figure 6. Graphs of means ± SDs and CVs of angular and positional differences calculated using
the ordered sequences of the different ordering schemes: (a), (b) means ± SDs and CV graphs for
SA-based ordering; (c), (d) means ± SDs and CV graphs for DP-based ordering.

groups. For comparison with the OSEM algorithm, the EM algorithm was also performed
using 256 iterations.

To compare the three ordering schemes (ROS, MLS and WDS) the coefficients of variation
(CVs) were calculated as defined by the ratio of the SD to the mean of angular and positional
differences between two adjacent indices of SA and DP pairs. The smaller CV of the
angular and positional differences is also necessary to compose a well-balanced subset because
differences between data in a given subset should also be uniform to minimize information
redundancy. In the case of the uniform cubic phantom, the CVs of OSEM reconstructions
were calculated for the nonzero uniform region of the phantom. In addition, the percentage
errors between the original phantom and reconstructed images were calculated as follows:

PE =

√√√√
∑

i (f̂ i − fi)
2

∑
i f

2
i

× 100(%). (2)

We also performed EM and OSEM reconstructions for noisy Compton projection data
to test the stability of OSEM algorithms with respect to the OS levels. In order to generate
noisy data for the six-cylinder phantom, Poisson random noise was added to the projection
data. Assuming a total source activity of 3 mCi for the six-cylinder phantom, a detector pair
sensitivity of 8 × 10−6 and an acquisition time of 30 min, the total detected counts were
approximately 4.8 × 106. EM was performed using 256 iterations. The OS levels of 16,
32, 64 and 128 were tested for DP- and AP-based OSEMs with the three different ordering
schemes. The corresponding iteration numbers for the chosen OS levels were 16, 8, 4 and 2,
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(b)

(a)

Figure 7. The central planes and percentage error graph of the original six-cylinder phantom,
EM (256 iterations) and OSEM (16 subsets and 16 iterations) algorithms with different ordering
schemes for noiseless data: (a) xy- and (b) yz-central planes and (c) percentage error.
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(c)

Figure 7. (Continued.)

respectively. SA-based OSEM was performed using two, four and eight subsets due to the
limited number of discrete SA. The corresponding iteration numbers were 128, 64 and 32,
respectively. The percentage errors were calculated after 3D Gaussian post-filtering with a
full width at half maximum (FWHM) of 4 mm for all reconstructed images by equation (2).

3. Results

3.1. Geometric comparisons

In this study, we designed a geometry consisting of three detector pairs (3-DIR) (figure 4),
which provided a wider angular coverage of the field of view than the traditional camera
consisting of one detector pair (1-DIR). Figure 5 compares the EM (64 iterations) results for
noiseless data obtained using the 1-DIR and 3-DIR geometries. Figures 5(a), (b) and (c) show
orthogonal planes on the x-, y- and z-axes of the six-cylinder phantom and the 3D EM images
for the 1-DIR and 3-DIR geometries. As compared with the traditional 1-DIR geometry,
3-DIR resulted in much improved reconstruction accuracy. Computation times were almost
same due to the geometric symmetry regarding the perpendicular relationship between 1-DIR
and 3-DIR.

3.2. Comparison of subset constructions and ordering schemes

Figure 6 shows the graphs of means ± SDs and CVs of the angular and positional differences
calculated using each of the ordering schemes. The MLS and WDS provided the largest
mean differences for the SA- and DP-based ordering schemes, respectively. A larger mean
difference in ordered data means that data are ordered in a well-balanced manner. In contrast,
the WDS provided lowest CVs for both SA- and DP-based ordering schemes. These lower
CVs indicate an improved capability of ordering projection data and more uniform differences
between two adjacent projections.

Figures 7 and 8 show the results obtained from tests using noiseless data. Figure 7 shows
the results obtained using the 3D EM and OSEM reconstructions, whereby projection data
generated from the six-cylinder phantom were divided into 16 subsets using the different
subset constructions and ordering schemes. The iteration number used for the EM and
OSEM algorithms were 256 and 16, respectively. In this comparative analysis, the results
generated using OSEM-ROS-SA were excluded, because it caused a significant artifact on the
reconstructed images.

Figures 7(a) and (b) show orthogonal slices of the xy- and yz-planes of the phantom and
the 3D reconstructed images. The percentage errors shown in figure 7(c) were calculated
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(a)

(b)

Figure 8. The xy-central planes, graphs of percentage errors and uniformities for the original
uniform cubic phantom and the OSEM algorithm with different ordering schemes for noiseless
data: (a) xy-central planes, (b) percentage errors and (c) uniformity graph.
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Figure 8. (Continued.)

using the formula mentioned in section 2.5. Little difference was observed qualitatively and
quantitatively between the EM and OSEM results, as shown in figure 7. In the Linux system
using an AMD Athlon X2 2.2 GHz CPU, total computation times for EMs and OSEMs
were 3.5 days and 8.84 h (on average), respectively. All OSEM algorithms with different
subset constructions and ordering schemes, except for the ROS-SA, produced reasonable
reconstructed images and the rate of acceleration was proportional to the rate of increase in the
number of subsets. DP- and AP-based OSEM methods provided lower errors than SA-based
methods (figure 7(c)). The WDS provided the lowest percentage errors for the DP- and AP-
based schemes, though these were only slightly lower than the errors of the other methods.
No difference in total computation time was observed for all OSEM algorithms because the
same number of subsets were used.

Figures 8(a), (b) and (c) show the average xy-planes, the percentage errors and the CVs
for OSEM reconstructions with 16 subsets and 16 iterations using the uniform cubic phantom,
respectively. The percentage errors showed the same trend as was observed for the six-cylinder
phantom (figure 8(b)). To quantify uniformity in reconstructed images, CVs were calculated
within the reconstructed volume, which corresponded to the nonzero region of the uniform
cubic phantom. OSEM-ROS-SA provided the poorest uniformity (over 0.4%), and the others
provided similar CVs of 0.02 to 0.04% (figure 8(c)).

3.3. Stability testing of the OSEM algorithm

In addition, we tested the stability of the OSEM algorithm using different ordering schemes
with respect to the various OS levels using noisy Compton projection data. Figures 9–11
show the analysis results obtained using the SA-, DP- and AP-based OSEM reconstructions,
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(a)

(b)

Figure 9. The average planes and percentage errors of OSEM-SA results from noisy data of the
six-cylinder phantom: (a) average xy-planes, (b) lowest percentage errors for OSEM which were
tested for the three ordering schemes and two, four and eight subsets, and (c) percentage error
versus iteration plot for EM and OSEM-MLS with eight subsets and 32 iterations (in the plot,
labels on the x-axis should be multiplied by 8 for the EM algorithm).
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(c)

Figure 9. (Continued.)

respectively, and different number of subsets for noisy data. In these three figures, (a) and
(b) show the average planes and the percentage errors of the EM and OSEM algorithms with
different numbers of subsets and ordering schemes when the percentage errors were lowest
during the iteration. Average planes were obtained from reconstructed transverse images
corresponding to 32 planes perpendicular to the z-axis within a length of 5 cm. The effects
of OSEM of increasing number of subsets on peripheral transverse images and on the central
image can be observed simultaneously. The percentage errors of EM (256 iterations) and
OSEM before and after applying a Gaussian smoothing filter are shown in (c), which confirm
the order-of-magnitude acceleration achieved using the OSEM algorithm.

In figure 9(c), SA-based OSEM (eight subsets and 32 iterations) with the MLS ordering
scheme is compared with EM with respect to percentage errors. For DP- and AP-based
subset constructions, OSEM-WDS with 16 subsets and 16 iterations was compared with EM
in (c) of figures 10 and 11. For this noisy data, OSEM provided images comparable to those
provided by EM and stable images, although the subset number was increased. In particular,
the MLS was the best choice for SA-based OSEM. On the other hand, DP- and AP-based
OSEMs with the WDS ordering scheme worked well despite the increase in the number of
subsets.

4. Discussion

In this study, in order to develop an OSEM algorithm for a Compton camera, an efficient
projector and backprojector were modeled using the Compton scattering probability as
determined using the Klein–Nishina formula, and the belonging probability as determined
by the ray-tracing method. Since all cones for Compton scattered data were defined by an axis
connecting two DPs in the scatterer and the absorber and a SA, we proposed three different
subset construction methods, SA, DP and AP schemes. To achieve the maximum angular and
positional differences between projections in a subset, we considered three ordering methods,
namely ROS, MLS and WDS. These different approaches were then quantitatively compared.

Figure 5 shows a Compton camera comprising two planar detectors that views the object
from only one side, and which suffers from typical limited-angle tomography artifacts e.g.
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(b)

(a)

Figure 10. The average planes and percentage errors of OSEM-DP results from noisy data of the
six-cylinder phantom: (a) average xy-planes, (b) lowest percentage errors for the OSEM algorithm
tested using the three ordering schemes and 16, 32, 64 and 128 subsets, and (c) percentage error
versus iteration plot for the EM algorithm with 256 iterations, and for the OSEM-WDS algorithm
with 16 subsets and 16 iterations (in the plot, the labels on the x-axis should be multiplied by 16
for the EM algorithm).



5024 S M Kim et al

(c)

Figure 10. (Continued.)

poor depth resolution. However, a Compton camera consisting of more detector pairs (like
the three detector pairs shown in figure 4) provides more complete tomographic sampling, and
hence fewer artifacts are produced during reconstruction. To obtain compatible images using
conventional molecular imaging systems various technical improvements, such as rotating
Compton camera, would be required (Hua et al 1999, Sauve et al 1999, Smith 2005).

On one hand, the MLS and WDS methods resulted in maximum mean differences between
two adjacent projections in the SA- and DP-based subset construction schemes, respectively.
On the other hand, best uniformities of differences were obtained using the WDS method in
both the SA and DP schemes. Based on the simulated results, we were able to compare the
acceleration magnitude of the OSEM and EM algorithms. ROS-SA-based OSEM using more
than eight subsets yielded artifactual results. For noisy data, all OSEM algorithms with other
ordering schemes did not generate artifacts in the reconstructed images and showed good
stabilities in terms of percentage errors, despite the increase in the number of subsets. In terms
of OSEM for ECT, since the projection data were divided into OS according to the projection
angles of gamma rays reaching the scintillation detector, a limited number of subsets were
used. However, since OSEM for a Compton camera employed many more subsets, due to
a combination of DP pairs and SA, it can provide more accelerated convergence if the data
have good counting statistics. When we used 128 subsets for DP- and AP-based OSEMs, the
reconstruction time was reduced to 1.2 h. As compared with other schemes, the MLS and
WDS with proper number of subsets yielded better OSEM results for the SA and DP schemes
than other combinations of subset constructions and ordering schemes. The three AP-based
ordering schemes produced similar results using the DP schemes.

The proposed three ordering schemes used in this study could be applied to reconstruction
using list-mode data from a Compton camera. Since each list-mode event in the data stream is
detected randomly, the ROS can be easily applied. If the DP pair and the SA of each event are
treated like continuous detection variables, the MLS and WDS ordering schemes could also
be used for OSEM on list-mode data.

In this study, we computed the Compton scattering probability without taking into account
the Doppler broadening effect. In the future, we will consider a more realistic system model for
quantitative reconstruction. This system model will include the Compton scattering probability
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(a)

(b)

Figure 11. The average planes and percentage errors for OSEM-AP results from noisy data of the
six-cylinder phantom: (a) average xy-planes, (b) lowest percentage errors for the OSEM algorithm
tested using the three ordering schemes and 16, 32, 64 and 128 subsets, and (c) percentage error
versus iteration plot for the EM algorithm using 256 iterations and for the OSEM-WDS algorithm
with 16 subsets and 16 iterations (in the plot, the labels on the x-axis should be multiplied by 16
for the EM algorithm).
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Figure 11. (Continued.)

including uncertainties on SA caused by Doppler broadening and energy resolution. We
expect that correction for Doppler broadening can be performed during OSEM reconstruction
implemented by a realistic system model. Since the computational burden would be markedly
increased by a more sophisticated system model, the use of multi-core processors and GPUs
would be required for parallel processing for image reconstruction (Ha et al 2009, Park et al
2009).

5. Conclusion

In this study, the OSEM algorithm was applied to a Compton camera employing electronic
collimation to reconstruct Compton scattered data. In order to construct subsets for the OSEM
algorithm, we proposed combinations of three subset construction methods (SA, DP and
AP schemes) and three ordering schemes (ROS, MLS and WDS). The experimental results
obtained showed that all OSEMs with different combinations of subset constructions and
ordering schemes provided an order-of-magnitude acceleration and retained overall quality
over the standard EM algorithm. The MLS and WDS provided maximum mean differences
for the SA and DP schemes, respectively. In contrast, the WDS exhibited minimum CVs
for both the SA and DP schemes. Furthermore, all OSEMs with different ordering schemes
exhibited similar performances in terms of quantitative accuracy and computational efficiency.
The MLS and WDS with appropriately chosen subsets yielded comparatively better OSEM
results for the SA and DP schemes, respectively. Moreover, because the performance of the
AP-based ordering schemes was intermediate to the performance of the SA- and DP-based
schemes and can use a larger subset number, they would be usable for list-mode data including
various SA. We expect that OSEM reconstruction will be found useful for Compton imaging
as the OSEM algorithm for ECT when multi-core processors or GPUs are adopted.
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