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Abstract

68Ga labeled NOTA-RGD was a recently developed positron emission tomography (PET) radiotracer for the
visualization of angiogenesis, and is regarded as a promising imaging agent for cancer and several other
disorders. In this study, we investigated the whole-body distribution and radiation dosimetry of 68Ga-NOTA-
RGD in humans. Ten cancer patients (53.7 – 13.5 years; 61.5 – 7.4 kg) participated in this study. PET scans were
performed using a PET/computed tomography (scanner in three-dimensional mode). After an intravenous
injection of 172.4 – 20.5 MBq of 68Ga-NOTA-RGD, eight serial whole-body scans were performed during 90
minutes. Volumes of interest were drawn manually over the entire volumes of the urinary bladder, the gall-
bladder, heart, kidneys, liver, lungs, pancreas, spleen, and stomach. Time-activity curves were obtained from serial
PET scan data. Residence times were calculated from areas under curve of time-activity curves and used as input
to the OLINDA/EXM 1.1 software. The uptake of 68Ga-NOTA-RGD was highest in the kidneys and urinary
bladder. Radiation doses to kidneys and urinary bladder were 71.6 – 28.4lGy/MBq and 239.6 – 56.6 lGy/MBq.
Mean effective doses were 25.0 – 4.4 lSv/MBq using International Commission of Radiation Protection (ICRP)
publication 60 and 22.4 – 3.8 lSv/MBq using ICRP publication 103 weighting factor. We evaluated the radiation
dosimetry of 68Ga labeled NOTA-RGD, which has an acceptable effective radiation dose.
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Introduction

Angiogenesis is the physiological process involving the
growth of new blood vessels, and an essential develop-

mental process. It is regulated by the interplay of growth
factors and inhibitors, and their imbalances can lead to dis-
ease. Therefore, the regulation of angiogenesis offers a strat-
egy for the treatment of cancer and other disorders, and

intensive efforts have been undertaken to develop such ther-
apeutic strategies.1–3

The integrins are a family of cell-surface receptors that bind
extracellular matrix components, organize the cytoskeleton,
and activate intracellular signaling pathways.4 Integrin avb3 is
a member of this family of receptors, highly expressed on
activated endothelial cells during angiogenesis, and associated
with the tumor growth, invasion, and metastasis.5–7

1Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea.
2Interdisciplinary Program in Radiation Applied Life Science, Seoul National University College of Medicine, Seoul, Korea.
3Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.
Departments of 4WCU Brain and Cognitive Sciences and 5Biomedical Sciences, Seoul National University College of Medicine, Seoul,

Korea.
6Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
7Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
8WCU Molecular Medicine & Biopharmaceutical Science, Seoul National University College of Medicine, Seoul, Korea.

Address correspondence to: Jae Sung Lee; Department of Nuclear Medicine, Seoul National University College of Medicine; 28 Yungun-Dong,
Chongno-Gu, Seoul 110-744, Korea
E-mail: jaes@snu.ac.kr
Keon Wook Kang; Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul
110-744, Korea
E-mail: kangkw@snu.ac.kr

CANCER BIOTHERAPY AND RADIOPHARMACEUTICALS
Volume 27, Number 1, 2012
ª Mary Ann Liebert, Inc.
DOI: 10.1089/cbr.2011.1061

65

D
ow

nl
oa

de
d 

by
 S

eo
ul

 N
at

io
na

l U
ni

v.
 M

ed
ic

al
 C

ol
le

ge
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

2/
15

/2
1.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



For the targeting of avb3, Arg-Gly-Asp (RGD) derivatives
labeled with various radioisotopes, such as, 125I, 99mTc, 18F,
90Y, 111In, and 64Cu, have been developed8–13 and their bio-
distribution and dosimetry studies have been examined.14,15

Recently, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA)-
based bifunctional chelating agent was employed to label an
RGD peptide to 68Ga.16 The importance of 68Ga for clinical
positron emission tomography (PET) imaging has increased
recently, because it has several inherent advantages for pos-
itron imaging in humans.17,18 The 67.6 minutes half-life of
68Ga is suitable for PET imaging, and expected radiation dose
is lower than those of other radioisotopes with a longer half-
life. High positron yield (89%) and easy accessibility by use of
in-house 68Ge/68Ga generators are also beneficial physical
characteristics.19 Furthermore, the long half-life (270.8 days)
of the parent nuclide 68Ge allows generators to be used for
more than a year.

Human radiation dose evaluation of a new radiotracer is
important for risk-benefit assessments in clinical application.
The aim of this study was to evaluate the whole-body dis-
tribution and radiation dosimetry of 68Ga labeled NOTA-
RGD in humans using biodistribution data obtained by a
PET/computed tomography (CT) scanner.

Materials and Methods

Radiochemistry

The radiotracer, 68Ga-NOTA-RGD was synthesized using
a minor modification of a previously reported method.16

Briefly, a NOTA-RGD kit, which contains NOTA-RGD
(10.7 lg, 10 nmol), sodium acetate (49.0 lg, 0.6 mmol), and
acetic acid (1.8 mg, 29 lmol), was prepared and used for 68Ga
labeling. Freshly eluted 68GaCl3 (1.0 mL, *740 MBq/0.1 M
HCl solution) solution from a 68Ge/68Ga-generator was ad-
ded to the NOTA-RGD kit using a 24 gauge I.V. catheter and
a fluorinated ethylene propylene needle to avoid metal
contamination. The reaction mixture was mixed vigorously,
and kept at 90�C–95�C for 5 minutes. After the reaction, the
reaction mixture was passed through an Alumina N light
Sep-Pak� cartridge (Waters), which was preconditioned with
water (5 mL) and a syringe filter (0.2 lm Supor� Membrane
Low protein binding; PALL Co.). 68Ga-NOTA-RGD was
eluted with isotonic saline (2 mL). Radiochemical yields and
purities were checked by radio-TLC; radiochemical yields
were > 98% after the 68Ga labeling procedure, and radio-
chemical purities were > 99.5% after purification.

Subjects

All procedures of this study were approved by the In-
stitutional Review Board of Seoul National University Hos-
pital, Seoul, Korea. Ten patients (4 women and 6 men) with
lung cancer or lymphoma were enrolled in this study. Mean
patient age and weight were 53.7 – 13.5 years (range: 31–72
years) and 61.5 – 7.4 kg (range: 49–73 kg), respectively.

PET/CT procedure

A Biograph TruePoint TrueV PET/CT scanner (Siemens
Medical) was used in this study to acquire serial emission
and transmission scan data sets. The scanner was composed
of 4 rings of detector blocks. Each ring contained 48 detector
blocks, and each detector block consisted of a 13 · 13 array of

lutetium oxyorthosilicate scintillation crystals, which has a
dimension of 4 · 4 · 20 mm3. The axial field-of-view of the
PET scanner was 216 mm. The scanner was operated only in
the three-dimensional (3D) mode for PET emission scans.

In all patients, the upper body from the neck to the upper
thigh was covered by a 5-bed emission scan. To obtain the
time-activity curves of organs, eight serial emission scans
were performed on all patients over 1.5 hours (about 1.3
times the half-life of 68Ga) after an intravenous injection of
68Ga-NOTA-RGD (172.4 – 20.5 MBq). The durations of emis-
sion scans varied from 30 to 300 seconds per bed (30, 30, 30,
45, 60, 180, 180, and 300 sec/bed). Scans were started at 1, 4,
7, 10, 15, 30, 46, and 62 minutes postinjection. All patients
voided urine after the fifth emission scan to reduce urinary
bladder dose. X-ray CT transmission scans were performed
twice, before the first and sixth emission scans, to correct for
c ray attenuation and to obtain the anatomical data required
for drawing volumes of interest (VOI). The second CT scan
was required, because we could not guarantee patient posi-
tion after voiding is identical with before voiding.

All emission data were reconstructed using the 2D OSEM
algorithm with four iterations and eight subsets after ran-
dom, scatter, attenuation, and normalization corrections and
data re-binning. Reconstructed images had dimensions of
256 · 256 · 165 with 2.67 mm transaxial pixel spacing and
5 mm axial slice interval.

The calibration factor required to convert pixel count rate
on emission PET image to activity per volume (MBq/cc) was
determined from a 68Ge/68Ga phantom study.

Data analysis

The VOIs of the nine different organs (gall bladder, heart,
kidneys, liver, lungs, pancreas, spleen, stomach, and urinary
bladder) were drawn to obtain their time-activity curves.
VOIs were drawn on CT images for volume invariant organs
(gallbladder, heart, kidneys, liver, lungs, pancreas, spleen,
and stomach). VOIs drawn on CT images were transferred to
eight serial PET emission images, and time-activity curves
were obtained. However, since the volume of the urinary
bladder increased with time, its VOI was drawn directly on
emission PET images.

VOIs were drawn over entire organ volumes.20,21 The
mean activity per unit volume of sub-sampled VOI was not
applied in this study, because average subject weight was
significantly lower than the standard adult male and female
model (73.7 and 56.9 kg) in OLINDA/EXM software (version
1.1, Vanderbilt University, 2007), which was used for dose
calculation.21,22 Furthermore, subject organ volumes were
not identical with those of standard phantom models.

Residence times (normalized number of disintegrations)
were calculated from time-activity curves. Cumulative ac-
tivities were obtained by calculating areas under time-
activity curves. The area under the curve of each time-activity
curve was calculated as the trapezoid sum of observed data
and the integral of physical decay for the curve tail after the
last scan except the urinary bladder.23,24 Residence times
(hour) were obtained as the ratio of cumulative activity
(MBq · hour) and injected dose to subject (MBq).

Time-activity curves of the urinary bladder showed a
pattern unlike that of the other organs. Total urinary bladder
activities continuously increased up to the final emission PET
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scan (62–87 minutes postinjection). Therefore, the assump-
tion made regarding physical decay of the tail of the curve
after the last scan was not appropriate for the urinary blad-
der, and special modeling of urinary activity was required.
The whole-body retention curve of radiotracer was derived
from activities in urinary bladder and voiding time (22 and
90 minutes) using dynamic bladder model of Thomas et al.25

From the whole-body retention curve, time-activity curve
and cumulative activity of urinary bladder were estimated.

In addition, the voiding cycle has to be taken into account
to calculate residence time for the remainder of the body,
because it is also an input parameter of OLINDA/EXM. If
voiding urine is prohibited, total residence time (RTtotal),
which is the summation of residence times for all organs and
the remainder of body, can be simply calculated using the
following equation:

RTtotal¼
R1

0 A0 · exp (� kt)dt

A0
� 1:443 · T1=2

where A0 is the initial activity of injected dose, and k is the
decay constant of the radioisotope. Total residence time is
almost 1.443 times the half-life (T1/2) of the radioisotope. On
the other hand, if voiding urine is considered, total residence
time cannot be obtained using the equation just cited, be-
cause excreted activities by voiding have to be subtracted. In
this study, voiding excretion (‘‘urine out’’ in Table 1) was
taken into account to calculate residence times for the re-
mainder of the body.

The radiation dose to each organ, effective dose (ED), and
effective dose equivalent (EDE) were calculated using indi-
vidual organ residence times. These variables were also
calculated using 1-hour and 1.5-hour voiding models.

Effective radiation dose estimation

The residence times obtained using the procedures just
mentioned were used as input parameters for OLINDA/
EXM 1.1 software. OLINDA/EXM 1.1 reports individual
doses for 24–25 target organs and effective radiation doses

(EDE and ED). Effective radiation doses are obtained using
weighted sums of individual doses to each target organ. EDE
was defined as in International Commission of Radiation
Protection (ICRP) publication 26 (1977), and was calculated
using weighting factors and doses to six major target organs
and five remainder organs. The EDE was revised to ED as
defined by ICRP publication 60 (1990), which used revised
radiation detriment values and tissue weighting factors. In
addition, the ED takes more organs into account than the EDE.
Eleven major organs and 10 remainder organs were included to
calculate EDE. These 2 effective radiation dose calculations
were implemented in OLINDA/EXM 1.1 software.

Recently, new tissue weighting factors were introduced in
ICRP publication 103 (2007).26 In this publication, more or-
gans are considered than in ICRP60, and the weighting fac-
tors of two critical organs were changed significantly (gonad
20%/8%, breast 5%/12%).

Although the ICRP103-defined ED is not implemented in
OLINDA/EXM software, it can be calculated using tissue
weighting factors and individual target doses. In this article,
3 types of effective radiation doses were estimated.

Results

Figure 1 shows the serial emission PET scan data of a
patient. High accumulation of 68Ga-NOTA-RGD was ob-
served on urinary excretion tracks (i.e., kidneys and the
urinary bladder). The liver was also found to be a high ac-
cumulation organ in all time frames. Activity in the urinary
bladder dropped after the 5th emission scan because of urine
voiding.

Graphs of percentage of injected dose (%ID) versus time
are shown in Figure 2 (uncorrected for radiation decay). As
was expected, the %ID of urinary bladder dropped after
voiding. Cumulative activity percentages and organ resi-
dence times are shown in Table 1, and as expected, high %ID
values and residence times were shown for the urinary
bladder, kidneys, and liver. The residence time of urinary
bladder was much higher than those of other organs, even
though a 2-hour voiding model was employed. About 10.8%
of injected doses concentrated in the urinary bladder. In
tumor lesion, the %ID per unit volume (liter) was compara-
ble to the liver.

The radiation doses absorbed by each organ, EDE by
ICRP26, and ED by ICRP60 (all obtained using OLINDA/
EXM 1.1 software), and ED by ICRP103 (calculated as the
weighted sum of individual doses) are presented in Table 2.
High radiation doses were reported for the urinary bladder
wall (239.6 – 56.6 lGy/MBq) and kidneys (71.6 – 28.4 lGy/
MBq). Mean EDE by ICRP26 and ED by ICRP60 and
ICRP103 were 31.9 – 5.4 lSv/MBq, 25.0 – 4.4 lSv/MBq, and
22.4 – 3.8 lSv/MBq, respectively.

Residence times in urinary bladder, radiation doses to
bladder walls, ED, and EDE values at various voiding fre-
quencies after scans are listed in Table 3. More frequent
voiding reduced radiation dose. The 1-hour voiding model
yielded a 12.9% lower dose to the bladder wall, and a 6.6%
lower ED (by ICRP60).

Discussion

68Ga labeled NOTA-RGD was a recently developed ra-
diotracer for PET to visualize angiogenesis, and is a

Table 1. Cumulative Activity Percentages (%ID),
Cumulative Activity Percentage Per Unit Volume

(%ID/L), and Mean Residence Times (hour)

Organ
Subject

no.a %ID %ID/L
Residence time
( · 100, hour)

Gallbladder 8 0.02 1.49 0.03 – 0.02
Heart 10 1.31 2.08 2.13 – 0.51
Kidneys 10 2.63 7.87 4.28 – 1.67
Liver 10 3.65 2.33 5.93 – 1.12
Lungs 10 2.17 0.81 3.53 – 0.53
Pancreas 8 0.03 1.87 0.05 – 0.04
Spleen 10 0.54 2.91 0.88 – 0.36
Stomach 10 0.57 1.36 0.92 – 0.24
Urinary bladder 10 10.84 N/A 17.62 – 3.37
Urine out 10 18.01 N/A 29.29 – 7.89
Remainder of body 10 60.24 N/A 97.95 – 11.79
Tumor 5 0.05 2.44 0.09 – 0.08
Total 100 162.61

aNumber of patients in whom the organ could be identified.
%ID, percentage of injected dose.
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FIG. 2. Graphs of percentage injected dose (%ID, mean – SD) versus time for the nine organs (uncorrected for radiation
decay). The %ID of the urinary bladder dropped after the 5th scan. Those of all the other organs showed decreasing activity.
SD, standard deviation.

FIG. 1. Transmission and emission scan data set of a 49 year-old male subject. Two X-ray CT transmission scans were
performed before the 1st and 6th emission PET scans. High accumulation of radiotracer was shown in the urinary bladder,
kidneys, and liver. Activity in the urinary bladder dropped after the 5th emission scan because of urine voiding. The injected
radiation dose of 68Ga-NOTA-RGD was 167.4 MBq. CT, computed tomography; PET, positron emission tomography.
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promising candidate for cancer imaging.8,16,18 The aim of this
study was to evaluate radiation dose exposure to humans
who undergo a 68Ga-NOTA-RGD emission PET scan. In this
study, radiation dosimetry of 68Ga-NOTA-RGD was exam-
ined in 10 human subjects who underwent eight serial
emission PET scans of the upper body from the neck to the
upper thigh to obtain the time-activity curves of nine anatomic
organs. Absorbed doses were estimated using OLINDA/
EXM 1.1 software.

In the present study, the predominance of renal excretion
of 68Ga-NOTA-RGD observed in mice16 was also confirmed
in humans (Fig. 1). Activities in urinary bladder dropped
considerably after voiding urine, which usefully reduced
dose to the urinary bladder wall. The 6th scan data acquired
after voiding was found to be useful for highlighting tumor
regions because of the reduced urinary bladder activity.

Although a 2-hour voiding model was primarily employed
in this study to estimate residence time in the urinary blad-
der contents, our results (Table 3) also showed that more
frequent voiding, such as, 1- or 1.5-hour voiding, helpfully
reduced urinary bladder activity and radiation dose. Ac-
cordingly, frequent urine voiding is recommended to pa-
tients who undergo a PET scan with 68Ga-NOTA-RGD.

The activities in urinary bladder contents were found to be
increasing at the end of our study (*90 minutes). However,
the time-activity curve of the urinary bladder could be de-
rived using the dynamic bladder model of Thomas et al.25

This model was useful to estimate excreted activities by
voiding and residence time for the remainder of the body.

In a previous study, the whole-body distribution and ra-
diation dosimetry of 18F-galacto-RGD was performed in
human subjects, which also shows rapid clearance, primarily
via the renal pathway.14 The ED and dose to the urinary
bladder wall of 18F-galacto-RGD were 18.7 lSv/MBq
and 220 lGy/MBq, respectively. In the present study,
68Ga-NOTA-RGD showed equivalent to or slightly higher
radiation dose than 18F-galacto-RGD (Tables 2 and 3). Al-
though 68Ga-labeled radiotracers have considerably shorter
physical half-lives than 18F-labeled radiotracers (67.63 vs.
109.8 minutes), this difference is balanced in terms of the
radiation dose by the initial kinetic energy of positrons
emitted (Emax = 1899 keV for 68Ga vs. 633 keV for 18F).
However, it should be noted that different internal distri-
butions of these radiotracers is another determinant factor of
the radiation dose.

The ED values of other PET radiotracers recently reported
in the literature are listed in Table 4, which shows that the
ED of 68Ga-NOTA-RGD is comparable to those of other
68Ga-labeled radiotracers.14,15,26–34 The ED values of 68Ga-
labeled radiotracers lie between those of 11C-labeled and
18F-labeled radiotracers. 11C-labeled radiotracers have signif-
icantly lower doses than 68Ga- and 18F-labeled radiotracers,
due to the much shorter half-life of 11C (20.4 minutes). On the
other hand, the ED difference between 68Ga- and 18F-labeled
radiotracers is not large because of the balance between half-
life and positron energy just mentioned.

In this study, ED by ICRP publication 103 was calculated
using the weighted sums of individual organ doses, and
compared with ED by ICRP60. Renal excretion is a pre-
dominant feature for 68Ga-NOTA-RGD; therefore, the radi-
ation dose to the urinary bladder wall was particularly high.
The tissue weighting factor for the urinary bladder wall de-
creased from 5% for ICRP60 to 4% for ICRP103. That would
be why the ED by ICRP103 was lower than that by ICRP60.

In the present study, we evaluated the radiation dosimetry
of 68Ga labeled NOTA-RGD, which has an acceptable

Table 2. Organ Radiation Doses, Effective Doses,

and Effective Dose Equivalents

Organ Radiation dose (lGy/MBq)

Adrenals 11.76 – 2.24
Brain 8.96 – 1.90
Breasts 9.02 – 1.86
Gallbladder wall 12.72 – 2.37
Lower large intestine wall 12.98 – 2.25
Small intestine 11.60 – 1.92
Stomach wall 18.26 – 4.27
Upper large intestine wall 11.55 – 2.20
Heart wall 22.29 – 4.62
Kidneys 71.61 – 28.38
Liver 20.87 – 4.21
Lungs 20.89 – 4.62
Muscle 10.26 – 1.93
Ovaries 12.99 – 2.25
Pancreas 8.97 – 3.08
Red marrow 8.51 – 1.48
Osteogenic cells 14.46 – 3.42
Skin 8.71 – 1.73
Spleen 27.52 – 7.92
Testes (n = 6) 9.63 – 0.66
Thymus 10.26 – 2.11
Thyroid 9.53 – 1.80
Urinary bladder wall 239.60 – 56.58
Uterus 15.82 – 2.11
Total body 11.39 – 2.03
EDE (lSv/MBq) by ICRP26 31.86 – 5.41
ED (lSv/MBq) by ICRP60 24.98 – 4.39
ED (lSv/MBq) by ICRP103 22.37 – 3.84

ED, effective dose; EDE, effective dose equivalent; ICRP, Interna-
tional Commission of Radiation Protection.

Table 3. Residence Times of Urinary Bladder Contents, Radiation Doses to the Urinary Bladder Wall,

Effective Dose Equivalents, and Effective Doses for Three Different Voiding Cycles

Voiding cycle 2 hours 1.5 hours 1 hour

Residence time of urinary bladder contents ( · 100, hours) 17.62 – 3.37 15.70 – 3.22 15.23 – 2.93
Radiation dose to urinary bladder wall (lGy/MBq) 239.60 – 56.58 214.50 – 53.10 208.60 – 50.79
EDE (lSv/MBq) by ICRP26 31.86 – 5.41 30.28 – 5.17 29.90 – 5.10
ED (lSv/MBq) by ICRP60 24.98 – 4.39 23.66 – 4.20 23.32 – 4.16
ED (lSv/MBq) by ICRP103 22.37 – 3.84 21.29 – 3.68 21.04 – 3.66
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effective radiation dose. Furthermore, the ED of 68Ga-NOTA-
RGD was comparable with those of other 68Ga-labeled
tracers.
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