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Purpose: Positron emission tomography (PET) is a noninvasive molecular imaging tool with vari-

ous clinical and preclinical applications. The polygonal structure of small-diameter PET scanners

that are designed for specific purposes can lead to gaps between the detector modules and result in

loss of PET data during measurement. In the current study, the authors applied the compressed

sensing (CS)-based total variation (TV) minimization method to PET image reconstructions to

reduce the artifacts caused by gaps in small-diameter PET systems.

Methods: The first step in each iteration estimates whether an image is consistent with the meas-

ured PET data using the existing common reconstruction algorithms (ART, OSEM, and RAMLA).

The second step recovers sparsity in the gradient domain of the image by minimizing the TV of an

estimated image. The authors evaluated the gap-compensable reconstruction algorithms with uni-

form disk and Shepp-Logan phantoms by simulating sinograms which contained Poisson random

noise and a data loss due to detector gaps. In addition, these methods were applied to real high reso-

lution research tomography (HRRT)-like sinograms of human brain and uniform phantom. A com-

parison with other methods for gap compensation prior to or during image reconstruction was also

made. Quantitative evaluations were performed by computing the uniformity, root mean squared

error, and difference between the reconstructed images of nongapped and gapped sinograms.

Results: The simulation results showed that the gap-compensable methods incorporating TV mini-

mization could control gap artifacts, as well as Poisson random noise. In particular, OSEM-TV and

RAMLA-TV showed distinct potential via the properties of convergence and robustness to different

noise levels and gap angle.

Conclusions: A TV minimization strategy incorporated into commonly used PET reconstruction

algorithms was useful for reducing the occurrence of artifacts due to gaps between detector mod-

ules in small-diameter PET scanners. VC 2012 American Association of Physicists in Medicine.

[DOI: 10.1118/1.3673775]
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I. INTRODUCTION

Positron emission tomography (PET) provides relevant in-

formation about biochemical processes at the molecular

level. Consequently, the use of PET has increased remark-

ably over the past 10 years in various clinical and preclinical

fields of application such as disease diagnosis, therapeutic

response monitoring, and drug discovery.1–4 In addition,

increasing demand for imaging systems with high spatial re-

solution and sensitivity have led to the development of PET

scanners with small ring diameters dedicated to small ani-

mals or specific organs, such as the brain and breast.5–8

Commonly, small-diameter PET systems are constructed

with multiple (flat) detector modules arranged in a poly-

gonal structure. However, the polygonal shape of the
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small-diameter PET system creates undesirable space or

gaps between the detector modules and results in a measure-

ment loss of PET data. Because of the considerable influence

of the data loss on the quality of reconstructed images, com-

pensation methods are required that can reduce the distor-

tions due to gaps between the PET detector modules.

Various methods have been proposed to compensate for

the data loss from detector gaps prior to or during the image

reconstruction. One type of approach is the gap filling method

which estimates the missing data from the measured data prior

to image reconstruction, based on several different algorithms.

These algorithms include bilinear interpolation, model-based

methods, and filtering methods in different domains, such as

the constrained Fourier space method and the discrete cosine

transform (DCT) domain filter.9–11 Van Velden et al. com-

pared these gap filling methods by assessing gap filling effects

for high resolution research tomography (HRRT) system.12

Another approach is the use of statistical image reconstruc-

tion, such as maximum a posteriori (MAP), which could be

defined by the combination of likelihood and prior probabil-

ity.13,14 The main idea in this approach is that the prior proba-

bility used in the MAP reconstruction could reduce the gap

distortion in the reconstructed images.

In the current study, we suggest another approach for gap

compensation, which finds solutions with incomplete data

sets based on compressed sensing (CS) theory. The CS, also

known as compressive sampling, is a new method with

which to precisely reconstruct a signal by utilizing fewer

samples than is generally thought necessary.15,16 To realize

this, CS relies primarily on the sparsity of the signal, which

is also commonly observed in the medical images. For

instance, the Shepp-Logan phantom in the image domain

[Fig. 1(a)], which may imitate brain structures, has sparsity

in the gradient magnitude domain of the image as shown in

Fig. 1(b).17,18 In Fig. 1(a), the intensities of most pixels are

not zero. On the other hand, the transform of the image into

gradient magnitude domain [Fig. 1(b)] leads to much

increased number of zero pixels.

When measured data are not sufficient to reconstruct an

image accurately, the reconstructed image could contain

undesirable artifacts. According to the CS theory, however,

if we recover the sparsity in a domain other than the image

domain, then the reconstructed image could have higher than

expected accuracy although incomplete measured data were

used. Therefore, in this study we applied the CS-based total

variation (TV) minimization method, which was originally

suggested for cone-beam computed tomography (CT) recon-

struction,17 to PET image reconstructions to reduce the arti-

facts arising from the detector gaps in small-diameter PET

systems. We incorporated the TV minimization in several

common PET reconstruction algorithms and evaluated the

gain in image quality achieved by the application of TV

minimization.

In the following sections, the proposed gap-compensable

reconstruction method, experimental datasets, and evaluation

methods are presented. Special focus is made on the evalua-

tion of improvement in intensity uniformity, quantitative ac-

curacy, and convergence properties using the numerical and

real experimental datasets. Section IV summarizes the key

findings that were observed throughout the study.

II. MATERIALS AND METHODS

II.A. Gap-compensable reconstruction methods

Common reconstruction algorithms for small-diameter

PET systems yield undesirable artifacts in the reconstructed

images if they are applied without any compensation proce-

dures. To reduce artifacts and recover more accurate images,

we propose the application of the constrained, TV minimiza-

tion method to these common reconstruction algorithms. The

constrained, TV minimization method derives from the com-

pressed sensing (CS) theory. The CS theory mainly relies on

the recovery of the sparsity of a target signal to reconstruct

an accurate original signal from incomplete datasets. Since

medical images have the sparsity in the gradient magnitude

domain [Fig. 1(b)],17,18 if this sparsity can be recovered, it

will be possible to reconstruct more accurate images.

To recover the sparsity of an image in the gradient magni-

tude domain during image reconstruction, a solution must be

found that minimizes TV of the estimate and is consistent

with the measured data. The equation for this constrained,

TV minimization reconstruction is of the form

arg min f fk kTV ¼
X

x

X
y

rf ðx; yÞj j; (1)

subject to Mf ¼ g; (2)

where f is a reconstructed image, g is the measured PET data

(sinogram), and M is the system matrix. This optimization

problem can be solved iteratively by recasting it as second-

order cone programs (SOCPs).19

Since the SOCPs require reformulation of the problem,

Sidky et al.17 introduced a separated two-step iterative

method. The first step is to solve Eq. (2) separately, which

enforces measured data to an image f. Then, the next step is

to find an image f which minimizes TV of an estimate from

the first step. The two separate steps in each iteration make it

possible to simplify the optimization problem utilizing exist-

ing reconstruction algorithms. This method has significance

as a TV-based algorithm that exploits the exact
FIG. 1. (a) Shepp-Logan phantom and (b) magnitude of the image gradient

of (a)
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reconstruction principle for linear system tomographic image

reconstructions.

To solve the constrained, TV minimization problem by the

separated two-step iterative methods, in this study, three com-

monly used image reconstruction algorithms were employed

in the first step: the algebraic reconstruction technique

(ART), ordered subsets expectation maximization (OSEM),

and row-action maximum likelihood algorithm (RAMLA).

Next, TV minimization by the gradient descent method was

performed as the second step. Depending on the method used

in the first step, these TV methods can variously be referred

to as ART-TV, OSEM-TV or RAMLA-TV. The performan-

ces of these three TV methods were then compared to the

conventional non-TV methods (ART, OSEM, and RAMLA).

Sections II A 1 and II A 2 provide a brief explanation of

the methods used in each step of the TV-based reconstruc-

tion methods for detector gap compensation.

II.A.1. Reconstruction algorithms

Although the three reconstruction algorithms used in this

study are well known, their mathematical formula are briefly

described here so as to provide information about the param-

eters that are adaptively used according to the data.

ART has been commonly applied to CT data and is a direct

iterative reconstruction algorithm used to solve the linear

equations expressing the detection process.20 In ART, the

measurement g is expressed by the linear equations of the sys-

tem coefficient matrix M and unknown source vector f as

shown in Eq. (2). ART updates an image at each iteration n as

f
ðn;mþ1Þ
j ¼ f

ðn;mÞ
j þ kðnÞ Mij

gi �
X

k

Mikf
ðn;mÞ
kX

j

M2
ij

8>><
>>:

9>>=
>>;
; (3)

where k(n) is a relaxation parameter which is gradually

decreased over iteration number and Mij is a system matrix

element representing the probability that a photon emitted

from a source site (voxel) of j would be detected in measure-

ment bin of i.
Assuming Poisson counting statistics, Eq. (2) can be

expressed statistically as follows:

PLðgj f Þ ¼ Pi
Mi; fh igi

gi!
exp � Mi; f

� �� �� �
; (4)

where mean of measurement gi is

�gi ¼ Mi; f
� �

¼
X

j

Mijfj: (5)

The statistical optimization problem is then to find an esti-

mate f when the likelihood probability of Eq. (4) reaches to

maximum value. The maximum likelihood (ML) problem

for PET measurement can therefore be solved using the fa-

mous EM statistical reconstruction algorithm, shown in the

following equation:21,22

f nþ1
j ¼

f n
jX

i

Mij

X
i

MijgiX
k

Mikf n
k

: (6)

Due to the slow convergence rate of the EM algorithm,

Hudson and Larkin23 proposed the OSEM algorithm which

could accelerate the convergence rate by performing similar

procedures to the EM algorithm with subsets (fSmg) of

measurements as follows:

f
ðn;mþ1Þ
j ¼

f
ðn;mÞ
jX

i2Sm

Mij

X
i2Sm

MijgiX
k

Mikf
ðn;mÞ
k

: (7)

However, the OSEM is not a globally convergent algo-

rithm, in which the closeness to the solution is dependent on

the subset number that is used. Therefore, this method exhib-

its a convergence problem depending on the subset numbers.

On the contrary, RAMLA is an accelerated algorithm over-

coming the nonconvergence of OSEM as follows:24

f
ðn;mþ1Þ
j ¼ f

ðn;mÞ
j þ kðnÞf ðn;mÞj

X
i2Sm

Mij
giX

k

Mij f
ðn;mÞ
k

� 1

0
BB@

1
CCA:

(8)

In Eq. (8), the relaxation parameter k(n) controls the

convergence.

II.A.2. Total variation minimization

The second step is to minimize the total variation of the

current image f (n,mþ1) which is obtained after the first step

described in the previous section.

min fk kTV : (9)

The difference from Eq. (1) is that Eq. (9) does not have

additional conditions on the closeness to the solution. Thus,

the second step becomes a straightforward unconstrained

optimization problem which can be simply implemented by

the gradient descent method. The gradient descent method

decreases jj f jjTV in the direction of the negative gradient of

jj f jjTV as follows:

f lþ1 ¼ f l � ad
v

vk k2

; (10)

where

vx;y ¼
@ f l
�� ��

TV

@f l
x;y

¼
f l
x;y � f l

x�1;y

	 

þ f l

x;y � f l
x;y�1

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ f l

x;y � f l
x�1;y

	 
2

þ f l
x;y � f l

x;y�1

	 
2
r

þ
f l
x;yþ1 � f l

x;yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ f l

x;yþ1 � f l
x�1;yþ1

	 
2

þ f l
x;yþ1 � f l

x;y

	 
2
r

þ
f l
xþ1;y � f l

x;yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ f l

xþ1;y � f l
x;y

	 
2

þ f l
xþ1;y � f l

xþ1;y�1

	 
2
r ;

(11)

and where e is a small positive number, d represents the

amount of change in the first reconstruction step and a is a
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parameter to balance between the amount of change in the

reconstruction step and TV minimization step. The l (¼ 0,…,

L�1) is the iteration number in the TV minimization step

and f 0 in Eq. (10) should be set to the current estimate,

f (n,M�1), obtained from the first reconstruction step. The esti-

mate f L�1 after the TV minimization step is then used at the

next iteration, nþ 1, as the initial estimate, f (nþ1,0), in the

reconstruction step.

II.B. Experimental datasets

To explore the feasibility of current methods, numerical

experiments simulated a PET scanner with a hexagonal ge-

ometry. The scanner has six gaps for which the angle is h
degree.

We used numerical disk (top) and Shepp-Logan (bottom)

phantoms shown in Fig. 2(a). In Figs. 2(b)–2(e), each row

shows the ideal (nongapped) and gapped sinograms of the

disk and Shepp-Logan phantoms, respectively. The gapped

sinograms on columns (c–e) were generated with the gap

angle h¼ 5�, 10�, and 15�, respectively. In Fig. 2, we can

see the data loss of an x-strip shape in the sinogram resulted

from the gap angle (h).

To simulate more practical situations, we also generated

noisy sinograms of the Shepp-Logan phantom at three differ-

ent noise levels. The noisy sinograms (levels 1–3) were gen-

erated as follows from the noiseless (denoted by level 0)

sinogram in Fig. 2(b).

After scaling down the sinogram by dividing the data by

the scale factor, we generated Poisson random noise in each

voxel. The larger scaling factor for the sinogram, the rela-

tively larger the Poisson random noise generated. For each

noise level, the scale factor was 2levelþ2, so that the level 3

sinogram was most noisy. After generating the Poisson ran-

dom noise, we rescaled each sinogram back to have the orig-

inal total count. The noise level of 1–3 determined the

scaling factors of 8, 16, and 32, and the noise quantities were

3, 4, and 6%, respectively, in terms of mean coefficient

of variation. We also generated noisy and gapped sinograms.

In this simulation, all the sinograms were acquired from 64

angular positions through 180� and were then reconstructed

by the non-TV and TV-methods.

We also applied these methods to measured PET data

(human brain imaged with F-18-FDG and a uniform cylin-

drical phantom with F-18) acquired using a clinical PET

scanner (Siemens Biograph TruePoint TrueV PET/CT sys-

tem) without any gaps. From this data, gaps of 5� degree

were added to mimic the Siemens HRRT of eight detector

banks following the procedures. First, the number of detector

bins (x-axis in sinogram) was reduced (168! 76) in consid-

eration of the different ring diameters of the Biograph and

HRRT. We did not change the bin size (4.01 mm) and the

angular sampling number because the measurement of

the spatial resolution was not the aim of this study. Then, the

gapped HRRT-like sinogram was generated by multiplying

the nongapped sinogram by the gap mask of the HRRT. The

nongapped and gapped HRRT-like sinograms were recon-

structed using the non-TV and TV methods.

For the comparative experiment to other gap compensa-

tion methods (see II D in detail), a silicon multiplier (SiPM)-

based small animal PET scanner,25–27 which has been

developed in our group for simultaneous PET/MR imaging

studies, was considered. The scanner consists of eight detec-

tor modules with the diameter of 9 cm and the compensation

methods were applied to the missing data due to the presence

of gaps of 9.2� in a silicon multiplier. Both the binned and

angular sampling numbers were 128.

II.C. Evaluation methods

For the quantitative evaluation, the uniformity of the

inside circle and outside ring of the disk phantom were cal-

culated separately to determine how each feature was

affected by detector gaps. The uniformity u in each region of

interest (ROI) was defined by

u ¼ 1� standard deviation of ROI

mean of ROI

� 
� 100 ð%Þ: (12)

FIG. 2. First row: Sinograms of the disk phantom, second row: Sinograms of the Shepp-Logan phantom (a) from the PET simulator (b) without gaps between

the detector modules, with gaps of angle (c) h¼ 5�, (d) h¼ 10�, and (e) h¼ 15�.
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The more uniform images should have a uniformity u closer

to 100%.

For the Shepp-Logan phantom, the percent root mean

squared error (RMSE) was calculated as follows:

%RMSE f recð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x

X
y

f rec
x;y � f org

x;y

h i2

X
x

X
y

f org
x;y

h i2

vuuuuuut � 100 ð%Þ:

(13)

For the percent RMSE calculations of the reconstructed

image f rec, the original phantom image f org was employed

as the normalization factor.

Difference images were calculated between the recon-

structed images of nongapped and gapped HRRT-like sino-

grams as well as the sum of the absolute difference.

II.D. Comparison to other methods

As mentioned previously, there are two approaches to

compensate the gap artifacts in PET that have been

attempted. Therefore, an empirical comparison was per-

formed between the current methods and these prior

approaches. Among these methods, the most advanced one

in terms of the theoretical background and performances in

the gap compensation was employed. One method is the

DCT domain filtering, an example of the gap filling methods

that are applied prior to image reconstruction, and the other

method is the block sequential regularized expectation maxi-

mization (BSREM) method, which is an example of the

MAP reconstruction algorithms.11,14

For this comparative experiment, both methods were

applied to the missing data in a SiPM-based small animal

PET scanner which consists of eight detector modules and has

gap angles of 9.2�. For the DCT and BSREM methods, soft-

ware code was used that was either provided by the authors of

each of method, or was generated under close collaboration

with them to minimize any bias in results due to an erroneous

understanding or implementation of the algorithms.

For the DCT methods, the DCT domain filter was

obtained from the gap mask of 9.2� in the SiPM PET detec-

tor ring. The gap mask has two specific patterns in the DCT

domain, horizontal lines and a “V”-shape, as in Ref. 11.

These patterns were utilized to filter out the DCT coefficient

corresponding to the gap data (x-strips in the gapped sino-

gram). The gap region of the x-strips in the measured sino-

gram was filled iteratively by two successive operations in

the DCT and sinogram domain. For a given iteration, an esti-

mate of the nongapped sinogram was obtained by the DCT

domain filter, followed by a taking of the inverse DCT trans-

form. The gap data in the sinogram domain were extracted

from the estimated nongapped sinogram.

The BSREM was originally proposed to solve MAP esti-

mation problems in an accelerated manner,28,29 and it was

shown that BSREM algorithms with a convex-nonquadratic

penalty function were effective in the compensation of gap

in PET data.13 In this study, we used the Bouman and Sauer

prior function30 for BSREM because this combination

showed the best performance in preliminary studies. The

regularization parameter of 0.5 was used in the BSREM.

For the comparison, the OSEM-TV and RAMLA-TV

methods were used because they showed excellent robust-

ness to statistical noise and the gap artifact in real datasets

(see the Results section). The numerical Shepp-Logan phan-

tom and real datasets (comprising a uniform phantom and

human brain dataset) used in Sec. II B were also employed

to evaluate these gap compensation methods. The size of the

real data was scaled to fit within the diameter of the SiPM

PET scanner.

III RESULTS

III.A. Numerical experiments

III.A.1. Disk phantom

The performance of the six different non-TV and TV

reconstruction methods, ART, ART-TV, OSEM, OSEM-TV,

RAMLA, and RAMLA-TV, were compared using the nu-

merical disk phantom. In each reconstruction, 32 iterations

were performed. For OSEM and RAMLA in the non-TV and

TV reconstructions, the subset numbers were 8 and 64,

respectively. Figures 3–5 show the results of the simulation

for the disk phantom. The fixed relaxation parameter of 1

was used for each iteration of ART and ART-TV. For the

TV-methods, Eq. (10) was iterated 20 times (¼ L) with the

FIG. 3. Reconstructed images of the numerical disk phantom (b)–(g) from sinograms in column (a) using six different non-TV and TV reconstruction methods,

(b) ART, (c) ART-TV, (d) OSEM, (e) OSEM-TV, (f) RAMLA, and (g) RAMLA-TV. The first and second rows show the data without and with gaps of angle

h¼ 10� between detector modules, respectively.
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parameter a set to 0.2 in every step, as has been proposed

previously.31

The first and second rows of Fig. 3(a) show the ideal

(nongapped) and 10� gapped sinograms which were used for

the reconstructions. Reconstructed images from the six

reconstruction algorithms are illustrated in Figs. 3(b)–3(g).

TV methods [(c) ART-TV, (e) OSEM-TV, and (g) RAMLA-

TV] produced accurate images for ideal and gapped

sinograms, while non-TV methods [(b) ART, (d) OSEM,

and (f) RAMLA] for gapped sinogram resulted in small

fluctuations at uniform regions, which caused the uniformity

to decrease.

FIG. 4. For the disk phantom, (a) the inside circle and (b) outside ring uniformity graphs over gap angle for the six different non-TV and TV reconstruction

methods (with the iteration of 32).

FIG. 5. Inside circle (a, c) and outside ring (b, d) uniformity graphs over the number of iterations for the six different non-TV and TV reconstruction methods

using sinograms of gap angles 0� and 10�. (For OSEM and RAMLA in the non-TV and TV reconstructions, the subset numbers were 8 and 64, respectively.)
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As shown in Figs. 3 and 4, the uniformities from all TV

methods were better than those from non-TV methods in

both the inside circle and outside ring of the disk phantom.

The results obtained from the gapped sinogram more clearly

showed the better performance of the TV methods. While

the artifacts due to data loss in the sinograms were visible in

the reconstructions of the non-TV methods, the TV methods

produced more accurate images that were indistinguishable

FIG. 6. Reconstructed images of the Shepp-Logan phantom (b)-(g) from sinograms in column (a) using six different non-TV and TV reconstruction methods,

(b) ART, (c) ART-TV, (d) OSEM, (e) OSEM-TV, (f) RAMLA, and (g) RAMLA-TV. The first and second rows show the noiseless (noise level 0) data without

and with gaps of angle h¼ 10�, respectively. The third and fourth rows show the noisy data (noise level 1).

FIG. 7. For the Shepp-Logan phantom, percent RMSE graphs over gap angle at noise level (a) 0 (noiseless), (b) 1, (c) 2, and (d) 3.
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from the original disk phantom. Only the OSEM-TV resulted

in a slight blurring near the border between the inside circle

and the outside ring [Fig. 3(e)]. The uniformities of the

ART-TV and RAMLA-TV reconstructions were greater than

95% for both the inside circle and the outside ring even

when the gap angle increased to 15� (Fig. 4).

In particular, the TV minimization step in RAMLA-TV

succeeded in removing horizontal artifacts that appeared in

the RAMLA reconstructions [Figs. 3(f) and 3(g)]. These hor-

izontal artifacts were located near the center when the gap

angle was small, and they spread apart from each other as

the gap angle increased. Since the horizontal artifacts did not

occur within the inside circle when the gap angle became

large, the uniformity of the inside circle improved with the

increasing gap angle (Fig. 4). Figure 5 shows the uniformity

graphs over the number of iterations. For all reconstructions

except for RAMLA, the uniformity almost converged after

16 iterations.

III.A.2. Shepp-Logan phantom

Using the Shepp-Logan phantom, six different non-TV

and TV reconstruction methods were evaluated by the per-

cent RMSE. The results for the Shepp-Logan phantom are

summarized in Figs. 6–9. Each reconstruction was per-

formed with 32 iterations, and the final result was chosen as

the iteration with the lowest percent RMSE. The subset num-

bers in OSEM and RAMLA were the same as in the disk

phantom. ART and ART-TV used a fixed relaxation parame-

ter of 1. In all TV-methods, the TV minimization step was

iterated 20 times with the parameter a set to 0.2.

The images in Fig. 6(a) depict the sinograms used in the

reconstructions. The first row is the ideal sinogram without

noise or detector gaps. The second and third rows show the

sinogram deteriorated due to either 10� gaps or level 1 noise,

respectively. The sinogram on the fourth row was affected

by both detector gaps and noise, which would be the most

realistic case. Figures 6(b)–6(g) show the reconstructed

images using the six reconstruction methods. All TV meth-

ods [Figs. 6(c), 6(e), and 6(g)] recovered images that were

qualitatively undistinguishable from the original Shepp-

Logan phantom. Only the OSEM-TV [Fig. 6(e)] produced

slightly smoothed edges. Conversely, the non-TV methods

[Figs. 6(b), 6(d), and 6(f)] produced fluctuations of intensity

over the reconstructed images.

The data loss from the detector gaps propagated into the

reconstructed images except for those reconstructed by the

ART-TV method and yielded diagonal artifacts (second and

fourth rows in Fig. 6). As in the reconstructions of the disk

phantom, horizontal artifacts were shown in RAMLA. How-

ever, the TV minimization step drastically reduced these

artifacts.

FIG. 8. For the Shepp-Logan phantom, percent RMSE graphs over noise level with the gap angle h¼ (a) 0�, (b) 5�, (c) 10�, and (d) 15�.
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All non-TV methods caused a propagation of Poisson ran-

dom noise in reconstructed data (third and fourth rows in

Fig. 6). Among these three reconstructions, ART produced

the highest amplitude of noise, and the streak artifacts were

propagated into the outside ring of the phantom. Although

the application of TV minimization resulted in slightly

smoothed edges of the images, the propagation of Poisson

random noise in the data was effectively reduced.

Figures 7 and 8 illustrate the percent RMSE graphs as a

function of gap angle and noise level. For each noise level,

the way in which the percent RMSEs changed depending on

gap angle are shown in Fig. 7. As in the reconstructed

images, the data loss due to the detector gaps most severely

affected the RAMLA reconstructions: The increasing per-

cent RMSE as gap angle increased was larger than in other

methods. Figure 8 shows how the percent RMSEs changed

depending on the noise level for each gap angle. The TV

methods created less percent RMSEs than the non-TV meth-

ods as the gap angle and the noise level increased. The

increasing amount of percent RMSE as noise level increased

for ART-TV seems to be larger than in the other two TV

methods, which may indicate that OSEM-TV and RAMLA-

TV are more robust to noise in the sinograms.

Figure 9 shows the percent RMSE graphs over the num-

ber of iterations. For the noiseless sinogram, the errors con-

verged even if there existed the data loss in the sinogram as

shown in Fig. 9(b). When the sinograms were contaminated

by the Poisson random noise, the errors for the non-TV

methods did not converge, while those for the TV methods

converged as shown in Figs. 9(c) and 9(d). This indicates

that the TV minimization step could control the propagation

of Poisson noise into the reconstructions.

III.B. Evaluation using real measurement data

The HRRT-like sinograms of human brain and of the

uniform cylindrical phantom were reconstructed with the

non-TV and TV methods. The reconstructed images had

the dimension of 128� 128� 109 (2.44� 2.44� 2.03 mm3).

The HRRT-like sinograms were generated with gap angle of

5 degree. For ART and RAMLA, the initial relaxation

parameters (k0) were set to 0.5 and 0.2, respectively, and

these parameters gradually decreased over the iteration by

k0/(iterationþ 1). OSEM with non-TV and TV methods

were performed with a single subset. In the TV methods, the

performance for gap compensation was evaluated with

FIG. 9. For the Shepp-Logan phantom, percent RMSE graphs over the number of iterations using (a) the sinogram with gap angle h¼ 0� and noise level 0

(noiseless), (b) h¼ 10� and noise level 0, (c) h¼ 0� and noise level 1, (d) h¼ 10� and noise level 1. (For OSEM and RAMLA in the non-TV and TV recon-

structions, the subset numbers were 8 and 64, respectively.)
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various values of a and L. The TV control parameter, a, was

varied in the range of 0.05–0.2 with an interval of 0.05. The

TV iteration number, L, was set to 10 and 20. The difference

images between reconstructions from the nongapped and

gapped PET data were then obtained.

Figure 10 representatively shows the transverse slices of

OSEM and OSEM-TV reconstructions from nongapped and

gapped sinograms of the uniform cylindrical phantom with

different parameters (a and L) and their difference images.

All non-TV reconstructions were postfiltered with a Gaus-

sian smoothing kernel (FWHM¼ 4.9 mm). In Fig. 10, only

the results of the non-TV and TV reconstructions of OSEM

(64 iterations) with the lowest (a¼ 0.05 and L¼ 10) and

highest (a¼ 0.2 and L¼ 20) parameters are demonstrated.

FIG. 10. Difference images between two reconstructions from nongapped and gapped PET data of uniform cylindrical phantom; (a) OSEM, (b) OSEM post-

smoothed by Gaussian function (FWHM¼ 4.9 mm), OSEM-TVs with (c) a¼ 0.05: L¼ 10 and (d) a¼ 0.2: L¼ 20.

TABLE I. For real HRRT-like sinograms of uniform cylindrical phantom, sum of absolute difference between

reconstructions of nongapped and gapped data which were resulted from non-TV and TV methods of ART,

OSEM, and RAMLA.

ART (6 iterations) OSEM (64 iterations) RAMLA (10 iterations)

Non-TV 26.27 11.31 13.9

Non-TVþGaussian (4.9 mm) 18.57 7.88 8.9

TV (a¼ 0.05, L¼ 10) 16.41 8.2 10.24

TV (a¼ 0.05, L¼ 20) 13.14 6.66 8.98

TV (a¼ 0.1, L¼ 10) 13.62 7.67 9.29

TV (a¼ 0.1, L¼ 20) 10.57 6.19 7.85

TV (a¼ 0.15, L¼ 10) 8.13 7.31 8.7

TV (a¼ 0.15, L¼ 20) 9.68 5.74 7.01

TV (a¼ 0.2, L¼ 10) 11.61 6.97 8.17

TV (a¼ 0.2, L¼ 20) 9.33 5.35 6.35
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The difference images suggest that the higher TV parameter

reduced more artifacts that were propagated from the miss-

ing data in the gapped sinogram.

For the uniform cylinder with HRRT-like gaps, Table I

shows the sum of absolute difference images in the non-TV

and TV methods of ART, OSEM, and RAMLA. All TV

reconstructions reduced the absolute difference between

images of nongapped and gapped data more than the non-

TV reconstructions. The higher the TV parameters were cho-

sen, the more suppressed were the quantitative difference

between the nongapped and gapped sinograms. However,

greater losses in image quality were observed such as a

blocky pattern.

Figure 11 show the transverse, coronal, and sagittal

planes of OSEM and OSEM-TV reconstructions of human

brain data and the corresponding difference images, respec-

tively. The TV parameters, a and L, were set to 0.15 and 10,

respectively, for all TV reconstructions. Compared with

non-TV reconstructions (a), TV reconstructions (b) effec-

tively reduced the gap artifacts and the noise fluctuations in

the reconstructed images.

III.C. Comparison to other methods

The first and second rows in Fig. 12 show the recon-

structed images of noiseless and noisy sinograms with

SiPM-PET gap for the Shepp-Logan phantom, respectively.

The OSEM (a, f) of the gapped sinograms in the first column

were compared with the aforementioned gap-compensation

methods which were DCT domain filtering followed by

OSEM (b, g), OSEM-TV (c, h), RAMLA-TV (d, i), and

BSREM (e, j). In Fig. 12, TV reconstructions (OSEM-TV

and RAMLA-TV) for the Shepp-Logan phantom yielded a

lower percent RMSE than the other two compensation meth-

ods, the DCT filter and BSREM (Table II). The undercom-

pensation of the missing sinogram data by the DCT filter

resulted in other artifacts, such as the narrow stripe pattern

(indicated by arrows) in the uniform region of the recon-

structed images.

FIG. 11. Planes of (a) OSEM and (b) OSEM-TV reconstructions from non-

gapped and gapped PET data of human brain; transverse (first row), coronal

(middle), sagittal (bottom) planes. (OSEM-TV used a¼ 0.15 and L¼ 10.)

FIG. 12. For the noiseless (top) and noisy (bottom) sinograms of the Shepp-Logan phantom with SiPM-PET gap, the reconstructed images using OSEM (a, f),

DCT filter followed by EM (b, g), OSEM-TV (c, h), RAMLA-TV (d, i), and BSREM with the Bouman and Sauer prior (e, j).

TABLE II. Comparison of gap compensation methods: %RMSE for noisy

data of the Shepp-Logan phantom.

EM DCT OSEM-TV RAMLA-TV BSREM

%RMSE 29.5 33.8 22.2 21.1 27.0
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Figure 13 shows the reconstructions of measured data of

the uniform cylindrical phantom and human brain used in

Sec. III B. In the case of the uniform cylindrical phantom, as

shown in the top row (a–e), several transverse slices were

averaged. The bottom images (f–j) are for real brain data. In

the image from the uniform phantom data, the DCT filter

resulted in a stripe artifact although the other methods did

not. In the case of real brain data, the BSREM created more

blurred images than the other methods.

IV. DISCUSSIONS AND CONCLUSIONS

PET scanners with a small ring diameters are designed in

a polygonal geometry, which causes gaps between detector

modules.32,33 These gaps lead to data loss in the measured

data, thus the sinogram will contain data loss of the x-strip

shape from the gaps. The data loss is especially significant

if we employ flat panel photomultiplier tubes or multiple

layers of scintillation crystals for depth of interaction

measurement.32,34–38 The conventional iterative reconstruc-

tion methods (without TV minimization) produced consider-

able artifacts in the reconstructed images from the gapped

sinograms. To reduce the artifacts due to gaps, we applied

the TV minimization to the most commonly used iterative

reconstruction methods, such as ART, OSEM, and RAMLA.

In the numerical experiments in which the disk phantom and

the Shepp-Logan phantom were used, we found that the TV

methods (ART-TV, OSEM-TV, and RAMLA-TV) produced

more accurate images than the conventional non-TV recon-

struction methods (ART, OSEM, and RAMLA). This was

also confirmed in the analysis of the human brain data and

uniform cylindrical phantom data.

The experiments using the disk phantom proved that the

TV methods could improve image uniformity. The image

uniformity was evaluated for two different regions (the

inside circle and outside ring). For the TV methods, all of

the reconstructed images yielded excellent uniformity

(nearly 100%) and qualitative comparisons with the original

image indicated that the methods produced images that were

recoverable with very good uniformity (Fig. 4). Conversely,

non-TV methods produced lower-quality images containing

fluctuations in the uniform region. In particular, the images

using RAMLA produced horizontal artifacts, which occurred

differently depending on how the number of subsets in

RAMLA was set (Fig. 3). However, RAMLA-TV resolved

this problem regardless of the number of subsets, so we did

not need to pay careful attention to the number of subsets in

RAMLA-TV reconstructions.

The next numerical experiment with the Shepp-Logan

phantom verified that the TV methods improved the image

quality and the convergence rate in terms of percent RMSEs,

even for the noisy and gapped sinograms. For the ideal sino-

gram without noise and gaps, TV methods recovered images

which were qualitatively indistinguishable from the original

phantom data. When noise and gaps affect the sinograms,

the reconstructed images and percent RMSEs of the TV

methods appeared differently, depending on the reconstruc-

tion algorithm used (ART, OSEM, and RAMLA). For the

gapped sinograms, ART-TV resulted in near-exact images,

while the artifacts were still propagated into the images

when using OSEM-TV and RAMLA-TV (Fig. 6). On the

other hand, OSEM-TV and RAMLA-TV showed more ro-

bust results to the noisy sinograms than ART-TV. For the

same gap angle, ART-TV resulted in larger RMSE increase

than OSEM-TV and RAMLA-TV as the noise level

increased.

For the TV methods, the percent RMSEs converged after

16 iterations for all cases, while the non-TV methods tended

to diverge after a few iterations due to the propagation of

noise in the sinogram (Fig. 9). This would be a remarkable

property of TV methods for application to practical imaging

studies. When handling real data, no stopping criteria exist

since we are not able to compute the percent RMSE due to

the absence of knowledge about the ground truth. Also, we

do not iterate too many times because excessive iterations

often cause severe artifacts from noisy and gapped sino-

grams as shown in numerical experiments; however, this

would not be problematic for the TV methods as we have

shown that the TV-reconstructed images from the noisy and

gapped sinograms almost converge after >16 iterations.

The sinograms from the HRRT-like system were gener-

ated from the real human brain and uniform cylindrical

FIG. 13. For the measured data of the uniform cylindrical phantom (top) and human brain (bottom), the reconstructed images using EM (a, f), DCT filter fol-

lowed by EM (b, g), OSEM-TV (c, h), RAMLA-TV (d, i), and BSREM with the Bouman and Sauer prior (e, j).
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phantom data acquired using clinical whole-body PET scan-

ner by considering the diameter difference between two PET

systems and gap size in HRRT. The TV methods were

applied with two parameters, a and L. In the case of the uni-

form phantom, the larger TV parameters resulted in a more

efficiently reduced gap artifact. However, the TV reconstruc-

tions of the gapped sinogram of brain with the large TV

parameters (a¼ 0.2 and L¼ 20) lead to undesirable blocky

patterns in the image. Thus, the suitable TV parameters

should be selected as a trade-off between the suppression of

gap artifact and the noise correlation (“blocky patterns”) in

the reconstructed images. Further investigation is needed to

develop a method that can effectively reduce the gap arti-

facts without generating the blocky patterns.

Three different gap compensation methods, DCT filter,

TV methods, and BSREM, were compared. The gapped

sinograms for the SiPM PET system were simulated using a

Shepp-Logan phantom. The real data of a uniform cylindri-

cal phantom and human brain were also used. Although all

the compensation methods were effective at reducing gap

artifacts in the reconstructed images, these artifacts were not

completely removed, especially in the simulation data. This

would be because the SiPM PET system contains more miss-

ing data than the HRRT system. In general, TV methods

demonstrated better performance than DCT and BSREM.

The proposed gap-compensable image reconstruction

method based on CS (ART-TV, OSEMTV and RAMLA-

TV) effectively reduced artifacts from the detector gaps as

well as Poisson random noise. OSEM-TV and RAMLA-TV

in particular showed distinct potential via the properties of

convergence and robustness to different noise levels and gap

angle.
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