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Comparative assessment of parametric neuroreceptor mapping
approaches based on the simplified reference tissue model
using [11C]ABP688 PET
Seongho Seo1,2,3,9, Su J Kim4,9, Yu K Kim5, Jee-Young Lee6, Jae M Jeong1,3, Dong S Lee1,3,7 and Jae S Lee1,2,3,8

In recent years, several linearized model approaches for fast and reliable parametric neuroreceptor mapping based on dynamic
nuclear imaging have been developed from the simplified reference tissue model (SRTM) equation. All the methods share the basic
SRTM assumptions, but use different schemes to alleviate the effect of noise in dynamic-image voxels. Thus, this study aimed to
compare those approaches in terms of their performance in parametric image generation. We used the basis function method and
MRTM2 (multilinear reference tissue model with two parameters), which require a division process to obtain the distribution
volume ratio (DVR). In addition, a linear model with the DVR as a model parameter (multilinear SRTM) was used in two forms: one
based on linear least squares and the other based on extension of total least squares (TLS). Assessment using simulated and actual
dynamic [11C]ABP688 positron emission tomography data revealed their equivalence with the SRTM, except for different noise
susceptibilities. In the DVR image production, the two multilinear SRTM approaches achieved better image quality and regional
compatibility with the SRTM than the others, with slightly better performance in the TLS-based method.
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INTRODUCTION
The simplified reference tissue model (SRTM)1 has been used
extensively in quantitative studies of a reversibly binding radio-
tracer using dynamic positron emission tomography (PET) and
single photon emission computed tomography, owing to its
noninvasiveness and robustness in the estimation of kinetic
parameters.2–5 The model parameters have been estimated
mainly using nonlinear least squares (NLS), which can provide
unbiased solutions for parameter estimation from time-activity
curves (TACs) with low- or moderate-level noise. In the use of NLS,
however, highly noisy data may bring several limitations such as
dependency on initial values, long computation time, and a high
level of uncertainty.2,4,6–8 Therefore, the NLS-based standard SRTM
(NLS-SRTM) is undesirable for parametric image generation (voxel-
by-voxel analysis) characterized by large amounts of voxel data
with high-level noise. Consequently, the application of NLS-SRTM
is limited to the analysis of regional average TACs that are much
less noisy than voxel TACs.2,4

Several linearized model approaches, capable of implementing
the SRTM, have been developed to achieve fast and reliable voxel-
wise parameter estimation for the generation of parametric
images of neuroreceptor binding.2,4,5,9 One of them is the basis
function method (BFM)2 that uses a set of basis functions to
convert the SRTM equation into a multiple linear regression
model. Another method is a multilinear reference tissue model
with two parameters (MRTM2),9 whose underlying linear regres-
sion model with three parameters (MRTM) was originally derived
independently of any specific model structures but is able to
represent the standard SRTM if one-tissue compartment is
assumed.4,5 In these two methods, only two parameters need to
be calculated through linear least squares (LLS) estimation.
However, the unknown model parameters in these methods are
not major kinetic parameters of interest (nondisplaceable binding
potential or the distribution volume ratio (DVR))10 but their
combinations with other parameters. Therefore, we need further
division of the estimated parameters to obtain the parameters of
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interest, increasing the variability of the final result and yielding
noisy parametric images.11,12

Conversely, Zhou et al4 suggested the following linearized SRTM
(called multilinear SRTM throughout this paper) that has the DVR
as one of its parameters,Z t

0
CT sð Þds ¼ DVR

Z t

0
CR sð Þdsþ DVR

k2=R1
CR tð Þ -DVR

k2
CT tð Þ; ð1Þ

where CT(t) and CR(t) are the tissue and reference TACs (kBq/mL),
respectively. The last independent variable CT(t) in the above
model normally has high noise levels at each voxel, though
LLS basically assumes that all independent variables are noiseless
and only a dependent variable (here,

R t
0 CT sð Þds) is contaminated

with noise.13,14 Since this violation of the model assumption
because of noisy CT(t) can introduce severe underestimations
in the model parameters estimated by the LLS method,15–17 Zhou
et al4 proposed to use the denoised CT(t) through spatial
smoothing.
In the presence of noisy independent variables, total least

squares (TLS) estimation14 may be a plausible alternative to
the LLS method; TLS provides consistent and unbiased estimates
without suffering from the underestimation issue of the LLS
method by taking into account the noise in both dependent and
independent variables. Though the TLS problem is based on the
fact that all variables in a linear model are measured with noise,
the first independent variable and sometimes even the second
one in equation (1) are often assumed to be effectively noise free.
Thus, we can also consider an approach based on an extension of
TLS, called mixed LS-TLS (MTLS),14 that allows noise in dependent
and only some independent variables.
Because the aforementioned linear approaches can be derived

from the standard SRTM, they are fundamentally equivalent to
NLS-SRTM except for different susceptibilities to noise, leading to
distinguishable performances in parametric imaging. Although
BFM and MRTM2 have been evaluated and frequently used in the
literature,3,5,11 a comparative analysis of them with the methods
based on the multilinear SRTM has been rarely performed. In Zhou
et al,4 the regularization-based MRTM (a method of indirect DVR
estimation) showed worse variance property than the multilinear
SRTM with spatial smoothing (a method of direct DVR estimation)
because of the former’s unavoidable error propagation caused by
the division of parameters. In light of this, in the present study, we
compare all those linear approaches in terms of their compatibility
with NLS-SRTM and the quality of DVR parametric images. We
hypothesized that the methods for multilinear SRTM would
perform better in parametric imaging than the others based on
a parameter division.
For their comparison and evaluation, we applied these

methods to both simulated and real dynamic [11C]ABP688 (3-(6-
methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-11C-methyl-oxime)18

human brain PET data. [11C]ABP688 is a highly selective and
promising radioligand recently developed for the in vivo imaging
of metabotropic glutamate receptor 5 (mGluR5), a potential
therapeutic target in various brain diseases.18–21 [11C]ABP688
shows fast kinetics and its binding can be reliably quantified
using the NLS-SRTM as shown in previous PET studies in both
animals22–24 and humans,25 where the results of NLS-SRTM
showed a high correlation (r⩾ 0.97) with those of a two-tissue
compartment model despite small bias (see section Reference
Region for [11C]ABP688). Although its uptake pattern is consistent
with mGluR5 distribution in the human brain,19,26 a relatively
moderate uptake in the brain due to lower affinity of [11C]ABP688
to mGluR5 compared with others,20,27,28 and the short half-life of
[11C] usually yield noisy dynamic PET data. Such noise properties
of [11C]ABP688, in addition to the wide distribution of the binding
sites in the brain, should well allow differences to be seen at high
noise levels among the parametric imaging approaches.

MATERIALS AND METHODS
Data Acquisition and Processing
The Institutional Review Board of Seoul National University Hospital
approved this study and signed, informed consents were obtained from all
participants. Thirty participants, including 9 healthy volunteers and 21
Parkinson’s disease patients, underwent 60-minute dynamic [11C]ABP688
PET scan using a Siemens Biograph mMR PET/MRI scanner (PET spatial
resolution: 4.4-mm at 1 cm and 5.2-mm FWHM at 10 cm offset from the
center of transverse field-of-view). For each participant, about 370MBq
(10.0 mCi) [11C]ABP688 (mean specific activity: 139.6 GBq/μmol) was
administrated with an intravenous bolus injection, and then the PET data
were acquired in a 3D list mode without arterial blood sampling. A total of
44 dynamic PET frames (8 × 15, 16 × 30, 10 × 60, 10 frames× 240 seconds)
were reconstructed using filtered back projection followed by 4-mm
Gaussian postfiltering, with routine corrections for physical effects such as
radioactive decay and attention (using UTE MR-based attenuation map).
The reconstructed individual frames consisted of 127 transaxial slices with
a matrix size of 256× 256, a pixel size of 1.40 × 1.40mm2, and a slice
thickness of 2.03mm.
Simultaneously with the PET data, sagittal T1-weighted MR images

(256× 256 matrix and 208 sagittal slices with 0.98 × 0.98 × 1.00mm3 voxel
size) were acquired using a 3D Turbo FLASH sequence with a repetition
time of 1,670ms, a echo time of 1.89ms, and a flip angle of 9°. Then,
region-of-interest (ROI) masks for various brain regions at each hemisphere
were automatically delineated from the individual T1 MR image using the
FMRIB Integrated Registration and Segmentation Tool (FIRST, FSL v4.0,
Oxford University, Oxford UK, http://www.fmrib.ox.ac.uk/fsl); the ROIs
include the caudate nucleus, hippocampus, and putamen, which are
receptor-rich brain regions, the thalamus with moderate-mGluR5 density,
and the cerebellum (reference region) known to have almost no
expression of the mGluR5.19,28 By directly placing those ROIs on the
reconstructed PET images without any coregistration between both
modalities, we obtained regional TACs.

Kinetic Analysis
In this study, DVR was the parameter of interest to be compared among
the methods. In all DVR estimations, cerebellar TAC was used as a reference
input function, and a weighted sum of squared residuals was minimized to
account for noise-level differences among the 44 data points. For the
weights, we used the frame durations.4,8

Simulation data. We first performed a simulation to evaluate bias and
variability of DVR estimates by all method. We obtained simulation
parameters ((β1, β2, β3) = (0.915, 0.072, 0.063) resulting in DVR= 2.051) by
fitting the NLS-SRTM to a real hippocampal ROI TAC. For the input function,
we used the average of cerebellar TACs over all participants that we
assumed to be noiseless. We generated 60-minute noiseless tissue TAC
using the SRTM equation. Then, Poisson-like noise at each of 11 noise
levels (5% to 100%), modeled as in previous studies,9,12,29,30 was added to
the noiseless tissue TAC, yielding 100,000 noisy TACs for each level. The
noise level was defined as averaged coefficient of variation (CV) of the later
portion of TAC (5 to 60minutes); 5% and 50% correspond to the noise
levels of real ROI and voxel data, respectively (see Supplementary Figure E3
for example TACs). In addition, we simulated noisy input functions at 5%
and 10% levels to examine the effect of noise in the input function.
From each set of tissue and reference TACs, DVR was estimated by

applying LLS to the multilinear SRTM (LLS-SRTM), by applying MTLS while
assuming that only CT(t) is noisy (MTLS1), and also assuming that both CT(t)
and CR(t) are noisy (MTLS2). We also applied LLS-SRTM after smoothing the
independent variable CT(t) (LLS-SRTM-SC), MTLS1-based and MTLS2-based
regularization with a spatial constraint (MTLS1-SC and MTLS2-SC,
respectively). Then, we compared their results with those from BFM and
MRTM2, by measuring their bias and CV12 based on the true DVR after
removing outliers; we defined outliers as extreme values that are more
than 1.5 interquartile ranges below the first quartile or above the third
quartile in a given set of 100,000 estimates. Descriptions of all the
approaches used will be presented in next subsections.

Human Positron Emission Tomography data. Before analyzing dynamic
PET data at each voxel to produce DVR parametric images, regional DVR
values were calculated from ROI TACs to illuminate the noise effect on
parametric imaging relative to the regional analysis and to provide a gold
standard (NLS-SRTM) for the comparisons at both ROI and voxel levels.
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From ROI TACs, DVRs were estimated by LLS-SRTM, MTLS1, and MTLS2. In
addition, BFM and MRTM2 were also applied to confirm the adequacies of
the parameter bounds for BFM and of the k2R value for MRTM2. For each
method, the resulting ROI DVR estimates were compared with the gold
standard in terms of correlation coefficients and linear regression. Then,
the resulting coefficients and fitted regression lines of all the methods
were compared with each other.
Meanwhile, DVR parametric images were generated by applying LLS-

SRTM-SC, MTLS1-SC, MTLS2-SC, BFM, and MRTM2 as well as LLS-SRTM,
MTLS1, and MTLS2 methods to whole-voxel data. Regional mean values of
the DVR images were extracted by applying the ROI masks to the images,
and then their linear relationships with the NLS-SRTM ROI results
(the gold standard) were also analyzed and compared among the
methods. Moreover, the qualities of the parametric images were assessed
by comparing the spatial variation of DVR values in image space among
the methods. Because we evaluated all the results against the NLS-SRTM
results, the term bias in the real data analysis will mean a deviation from
the NLS-SRTM results throughout the paper.

Multilinear Simplified Reference Tissue Model Based on Linear
Least Squares
With dynamic PET measurements of n frames, equation (1) gives rise to an
over-determined system of n linear equations in P= 3 unknowns (DVR,
DVR
k2=R1

, and - DVR
k2
), represented in a matrix form by

y � Xβ; ð2Þ
where X is an n× p matrix and its ith row is given asR ti

0 CR sð Þds; CR tið Þ;CT tið Þ
h i

, y is an n× 1 vector whose ith element isR ti
0 CT sð Þds for ith mid-frame time ti (1⩽ i⩽ n) and β ¼ DVR; DVR

k2=R1
; - DVR

k2

h iT
.

Given n measurements of one dependent variable (y) and p
independent variables (X), the LLS estimation finds a solution (β̂LLS)
minimizing the sum of squared distances from the n measured points to
the fitted p-dimensional hyperplane as follows:

min
β

:Xβ - y:22: ð3Þ

The meaning of the minimized cost function in equation (3) is the minimal
perturbation of noisy data such that the modified set ŷ ¼ Xβ has a
solution. Such perturbation is based on the assumptions that X is exactly
measured, and that y is a perturbed measurement of ŷ (due to noise)
satisfying an exact linear relationship ŷ ¼ Xβ. The LLS estimate is given as
β̂LLS ¼ XTX

� � - 1
XTy.

In equation (1),
R t
0 CR sð Þds and sometimes CR(t) could be considered as

effectively noise-free data, because the integration reduces fluctuations in
TAC and CR(t) is obtained by averaging voxel TACs over a reference ROI.
Hence, in general, the noise level of CT(t) determines whether the LLS
assumption about X is valid or not. For data with low-level noise such as
ROI TACs, LLS can produce a good estimate for the unknown parameters β.
However, at voxel levels with large contamination, LLS can introduce a
negative bias to β estimates because of the violation of the LLS
assumption.

Multilinear Simplified Reference Tissue Model Based on Linear
Least Squares with Spatial Constraints
An intuitive and direct approach to address the aforementioned bias issue
in parametric imaging via LLS-SRTM would be to reduce the noise level of
CT(t). For this purpose, Zhou et al4 suggested replacing the original noisy
CT(t) with its spatially smoothed values. The denoised CT(t) serves as a
spatial constraint, forcing the regional mean values of parametric images
to be close to the corresponding regional analysis results.4 The resolution
loss associated with spatial smoothing is not directly propagated into the
final parametric images because the smoothed data are only used as an
independent variable, in the estimation process. In this study, we used a
2D mean filter with a window size of 10 × 10 pixels.

Multilinear Simplified Reference Tissue Model Based on Mixed LS-
Total Least Squares
The MTLS14 considers noisy and noise-free independent variables together.
Whereas the LLS method confines the directions of fitting to be along only
the coordinate axis of y, MTLS searches all possible perturbations of n

measured points along not only y but also the coordinate axes corres-
ponding to noisy independent variables.
In this study, the MTLS solution, denoted by β0, was computed using the

closed form solution (equation B.4) of the original MTLS problem described
in Supplementary Appendix B. Meanwhile, we also derived the following
minimization problem that is equivalent to the original MTLS problem,

min
β

:Xβ - y:22
1þ :Pβ:22

; ð4Þ

where P is a diagonal matrix whose diagonal entries have values of 1 and 0
corresponding to noisy and effectively noise-free columns of X,
respectively. Notice that the new formulation of equation (4) is very
convenient for setting a regularization problem in the context of the MTLS
problem as shown in the next subsection and, to our knowledge, has not
yet been reported elsewhere.
Although MTLS assumes that some of the independent variables are

exactly known, all data in tracer kinetic models are contaminated with
noise to some extent. Therefore, care has to be taken to identify which
independent variables in equation (1), particularly CR(t), can be considered
to be almost noise free. Therefore, we tested two different assumptions
that only CT(t) (for MTLS1) and both CT(t) and CR(t) (for MTLS2) are noisy.
For the two assumptions,

R t
0 CT sð Þds is assumed to be noise free. We used

P=diag(0, 0, 1) for MTLS1 and diag(0, 1, 1) for MTLS2.

Mixed LS-Total Least Squares With Spatial Constraints
In theory, MTLS provides an estimate with better accuracy but larger
variance than LLS.14 Furthermore, highly noise contaminated voxel data
and strong correlation between independent variables in kinetic models
can exacerbate the variability in the MTLS results (β0), giving rise to large
spatial noise in parametric image space. Since a regularization technique
can drastically reduce variance at the expense of acceptable bias, we
adapted one strategy introduced in Zhou et al4 for MTLS so that the
resulting solution is regularized in the context of the MTLS problem; by
adding a penalty term to equation (4), we formulated the following
regularization problem,

min
β

:Xβ - y:22
1þ :Pβ:22

þ λ:L β - βsð Þ:22; ð5Þ

where βs is a spatial constraint that restricts the range of bias allowed in
the final solution, λ is a regularization parameter to control the balance
between the cost function and the penalty (or the balance between bias
and variance), and L is a diagonal matrix that assigns different weights to
each component of β. As the penalty term increases (or decreases), the
solution converges to βs (or β0). Hence, the penalty in equation (5) spatially
constrains the resulting parameters to be around the values of
neighboring voxels.
The implementation of solving the above regularized MTLS with a

spatial constraint (MTLS-SC) includes two steps. In the first step, the spatial
constraint βs is prepared by computing β0 images using the MTLS method
and subsequently by applying a spatial smoothing filter to the β0 images.
In the final step, the β̂MTLS - SC parametric images, the solution to the MTLS-
SC problem (equation (5)) is computed by

β̂MTLS- SC ¼ XTX -
:Xβ0 - y:

2
2

1þ :Pβ0:
2
2

P þ H

 ! - 1

XTy þ Hβs
� �

; ð6Þ

where H is a diagonal matrix and its diagonal elements hj (j= 1, 2, 3 in
multilinear SRTM) are calculated as follows:

hj ¼ σ̂2

β0j - βsj
� �2 : ð7Þ

Here, β0j and βsj are the jth elements of vector β0 and βs , respectively, and
σ̂2 is the noise level of the data estimated as σ̂2 ¼ :Xβ0 - y:

2
2=ðm - pÞ. For

both simulated and real data, we used a 2D median filter (window size:
5 × 5 pixels) followed by a 2D mean filter (window size: 5 × 5 pixels) to
obtain βs.
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Basis Function Method
The BFM is based on the analytical solution of the original SRTM
rewritten as

CT tð Þ ¼ β1CR tð Þ þ β2CR tð Þ � e - β3t; ð8Þ
where (β1, β2, β3)

T= (R1, k2–R1k′2, k′2)T, R1(unitless) is the tissue-to-reference
ratio of the rate constants for the influx from plasma, k2 (1/min) is the efflux
rate constant from tissue to plasma, and k′2 (1/min) denotes the apparent
efflux rate constant from tissue when the tissue region can be approximately
described with one compartment given as k02 ¼ k2

DVR ¼ k2
1þBPND

. Unlike the
original SRTM that uses NLS to fit equation (8), the BFM applies LLS for a set of
linear models that are derived from equation (8) as follows

CT tð Þ ¼ β1CR tð Þ þ β2Bj tð Þ for 1� j�m; ð9Þ
where each Bj tð Þ ¼ CR tð Þ � e - β3j t is called a basis function, β3j is the jth value
in a predefined discrete pool of β3 values, and m is the number of the
predefined β3 values or the corresponding basis functions. As the result, LLS

estimates of β̂1j ; β̂2j

h i
are obtained for each β3j (or Bj(t)). Then, over all the

m sets of β̂1j ; β̂2j ; β̂3j

h i
, the BFM solution β̂1; β̂2; β̂3

h i
is determined as the one

with the smallest sum of squared errors. Finally, DVR is computed by

β̂2=β̂3 þ β̂1

� �
. In clinical data analysis, we assumed that β3 is bounded

between 0.03 and 0.60 (1/min) by considering the parameter estimates from
the other methods used in this study, and 100 discrete values spaced
logarithmically between the bounds were used as the lookup table. For
simulation studies, we added a true value of β3 to that lookup table.

Multilinear Reference Tissue Model with Two Parameters
The MRTM2 is based on the following model with two parameters
[β1,β2]

T= [k2,− k′2]T,

CT tð Þ ¼ β1

Z t

0
CR sð Þdsþ 1

k2R
CR tð Þ

� �
þ β2

Z t

0
CT sð Þds; ð10Þ

where k2R is the preliminarily estimate of the values for the efflux rate
constant in the reference region (k2R), and is usually estimated by
averaging the k2R estimates obtained from several ROI TACs.9 For real data
analysis, in this study, we obtained k2R for each participant by applying the
original model with three parameters (MRTM)9 to ROI TACs, in advance; its
mean over all participants was 0.240± 0.046. Subsequently, the parameter
estimates β̂1 and β̂2 were computed using LLS and DVR is determined as
- β̂1=β̂2 ¼ k2=k02. In simulation studies, we used a true value for k2R.
It is noteworthy that the MRTM and MRTM2 were derived from graphical

analysis without specifying a specific compartmental configuration for
tissue region and without assuming the same K1/k2 for both tissue and
reference regions. Thus, they are mainly fitted to only the later parts of the
dynamic frames after a certain time point t*(⩾0). Besides, when one-tissue
model assumed, the MRTM with t* = 0 was proved able to implement the
SRTM.4,5 In this study, we confined the application of the MRTM and
MRTM2 to the one-tissue compartment case for the compatibility with the
SRTM, and therefore fitted the MRTM (only for pre-estimation of k2RÞ and
MRTM2 to the whole frames.

RESULTS
Simulation Studies
Figures 1 and 2 show the bias and CV of DVRs estimated by each
method for different levels of input function noise. For noiseless
input data (solid lines), all the methods showed almost no bias at
low tissue-noise levels (⩽10%) but very different bias properties
with increasing tissue-noise levels. The biases of results from LLS-
SRTM, MTLS2 and MTLS2-SC have larger extents than the others at
almost all tissue-noise levels. The negative bias of LLS-SRTM
rapidly increased and then converged to a certain value while
those of MTLS2 and MTLS2-SC showed fast and more complicated
change. The other five approaches showed much slower changes
in bias, while maintaining small values; among them, MTLS1-SC
provided the most stable and the smallest bias. However, the CV

Figure 1. Comparison of bias of distribution volume ratio (DVR) values estimated by various methods from simulated tissue time-activity curves
(TACs) of [11C]ABP688 at different noise levels ranging from 0% to 100% and reference region input functions at noise levels of 0% (solid line),
5% (dashed line), and 10% (dotted line). We used eight different linear estimation methods based on the standard simplified reference tissue
model (SRTM) including (A) MTLS1; (B) MTLS2; (C) LLS-SRTM; (D) MRTM2; (E) MTLS1-SC; (F) MTLS2-SC; (G) LLS-SRTM-SC; and (H) BFM. The bias
and CV were computed after removing outliers. BFM, basis function method; LLS, linear least squares; LLS-SRTM, multilinear SRTM based on
LLS; LLS-SRTM-SC, LLS-SRTM with denoised CT(t); MRTM2, multilinear reference tissue model with two parameters; MTLS, mixed LS-TLS;
MTLS1, multilinear SRTM based on MTLS considering only tissue concentration CT(t) as noisy data; MTLS2, multilinear SRTM based on MTLS
considering both CT(t) and reference region concentration CR(t) as noisy data; MTLS1-SC, MTLS1-based regularization with spatial constraint;
MTLS2-SC, MTLS2-based regularization with spatial constraint; SRTM, simple reference tissue model; TLS, total least squares.
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also increased with higher tissue-noise levels for all the methods
except for MTLS2 and MTLS2-SC; the two methods showed very
complicated behavior in CV like in bias, possibly due to violation of
assumption for noise level of independent variables. MTLS1
yielded the largest CVs at the expense of achieving small bias
whereas LLS-SRTM showed the smallest CVs. The DVRs directly
estimated by MTLS1-SC and LLS-SRTM-SC showed better precision
than those computed by division of parameter estimates in BFM
and MRTM2.
As shown in Figures 1 and 2, similar overall trend of the bias and

CV for each method was observed when using noisier reference
input function. Only LLS-SRTM and LLS-SRTM-SC showed notice-
able changes in bias (Figure 1); there was additional noise-induced
negative bias that decreases as the noise of tissue TAC increases
and becomes dominant compared with the noise of input
function. The effect of noisy input function on the bias by the
other methods was marginal and very consistent over all tissue-
noise levels. However, the noisy input function affected the CV
similarly for all the methods, only at low tissue-noise levels that are
not very different from the noise levels of input function (Figure 2).
As the tissue-noise becomes dominant, the effect of noisy input
function on CV diminished.

Human Positron Emission Tomography Studies
For ROI TACs with low noise level in general, the DVRs from LLS-
SRTM, MTLS1, and MTLS2 (for a multilinear SRTM) were almost
identical to those from NLS-SRTM (y= 0.99x+0.02, r= 1.00 for LLS-
SRTM; and y= 0.99x+0.03, r= 1.00 for MTLS1 and MTLS2) as shown
in Figure 3. In addition, BFM and MRTM2 (requiring division of
model parameters for DVR estimation) also showed very similar
results (y= 1.00x− 0.00, r= 1.00 for BFM; and y= 0.99x+0.03,
r= 1.00 for MRTM2), confirming reasonable parameter constraints
for each method.

The different effects of noise become apparent in parametric
images (Figures 4 and 6). Figure 4 shows the representative [11C]
ABP688 DVR parametric images generated using LLS-SRTM (A),
MTLS1 (B), and MTLS2 (C) in which no spatial constraints were
applied. Regional mean values in the LLS-SRTM DVR images
revealed a bias relative to the gold standard obtained from ROI
TACs using NLS-SRTM (y= 0.85x+0.24, r= 0.98; Figure 5A). Thus,
despite better image quality, their image intensities were
remarkably lower than those obtained by other methods shown
in Figures 4 and 6. MTLS1 DVR images that considered only CT(t)
as a noisy independent variable exhibited remarkable spatial
variability (Figure 4C). However, their regional mean values
showed good agreement with the gold standard (y= 1.01x+0.01,
r= 1.00; Figure 5B) when we removed outliers that are more than
1.5 interquartile ranges below the first quartile or above the third
quartile of voxel DVRs in ROI; the outliers cause salt-and-pepper
noise in the MTLS1 DVR images. MTLS2 introduced more severe
noise into the resulting DVR images (Figure 4D) and also a relative
bias in their regional mean values (y= 0.81x+0.31, r= 0.90;
Figure 5C), even after removing outliers, implying the violation
of assumption that both CT(t) and CR(t) are noisy data. Collectively,
LLS-SRTM, MTLS1, or MTLS2 was not good for generating DVR
images.
However, the use of a spatial constraint improved the results of

LLS-SRTM and MTLS1 as shown in Figures 6 and 7. By use of the
denoised CT(t) (the spatial constraint constructed by spatial
smoothing), LLS-SRTM-SC reduced the bias in the resulting DVR
images while maintaining image quality and resolution
(Figures 6A and 7A). MTLS1-SC achieved remarkable improvement
in the quality of the DVR images without increasing bias
(Figures 6B and 7B); this was achieved by successfully removing
salt-and-pepper noise in the MTLS1 DVR images through
regularization with a spatial constraint. The quality of MTLS1-SC
images was comparable to the LLS-SRTM-SC images. Conversely,

Figure 2. Comparison of coefficient of variance (CV) of distribution volume ratio (DVR) values, presented as in Figure 1. (A) MTLS1; (B) MTLS2;
(C) LLS-SRTM; (D) MRTM2; (E) MTLS1-SC; (F) MTLS2-SC; (G) LLS-SRTM-SC; and (H) BFM. BFM, basis function method; LLS-SRTM-SC, LLS-SRTM
with denoised CT(t); MRTM2, multilinear reference tissue model with two parameters; MTLS, mixed LS-TLS; MTLS1, multilinear SRTM based on
MTLS considering only tissue concentration CT(t) as noisy data; MTLS2, multilinear SRTM based on MTLS considering both CT(t) and reference
region concentration CR(t) as noisy data; MTLS1-SC, MTLS1-based regularization with spatial constraint; SRTM, simplified reference tissue
model; TLS, total least squares.
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as illustrated in Figures 6C and 7C, MTLS2-SC still yielded severe
bias in the DVR images.
Basis function method and MRTM2 produced DVR images of

similar intensity levels. However, their parametric images were
slightly noisier, as shown in Figures 6D and 6E. Although DVR
images from BFM had ROI-mean values similar to those of gold
standard (Figure 7D), they introduced some blob-like artifacts,
possibly due to the spatial correlation of noise, indicated by the
white arrows. MRTM2 have a larger number of outliers that
deteriorate correlation with gold standard (Figure 7E) and
produced noisy parametric image voxels in low binding regions
(usually found in some subjects with relatively lower inject dose)
and the background region outside the brain.

DISCUSSION
In the present study, we have compared several different
parametric neuroreceptor mapping approaches whose underlying
models can be derived by the linearization of the standard SRTM
equation. These methods share the basic assumptions of the
SRTM except for how to handle the major noise source, CT(t),
which primarily leads to different properties among the resulting
parametric images. Thus, the main objective of this study was to
compare the SRTM-based approaches in terms of the effects of
noise on parametric images. We first assessed their statistical
properties using simulated [11C]ABP688 data at various noise
levels. Then, we applied these methods to dynamic [11C]ABP688
PET images, whose image voxels have a small size and high-level
noise. Besides the parametric imaging, we also performed ROI
analysis to validate each method’s compatibility with NLS-SRTM at
low noise levels, to highlight the dissimilar effects of high-level

noise by contrasting with the low-noise effect, and to assess the
validity of a priori information required for BFM or MRTM2.

Comparison Between Direct and Indirect Approaches for
Distribution Volume Ratio Estimation
Our simulation studies verified that the methods considered are
radically equivalent to NLS-SRTM but have different susceptibil-
ities to image noise. This is consistent with our human PET studies;
in the ROI analysis, all the methods showed equivalently good
results (Figure 3) whereas those of the corresponding parametric
imaging approaches were distinguishable from each other
(Figures 4–7). The major distinction in parametric imaging
appeared between two categories of methods: ones that provide
direct estimation of DVR using multilinear SRTM (LLS-SRTM or LLS-
SRTM-SC and MTLS or MTLS-SC) and the others that produce DVR
indirectly through division of other parameter estimates (BFM and
MRTM2). In addition, the former direct methods estimate three
parameters (including DVR) in weighted least squares manner by
using CT(t) as an independent variable and

R t
0 CT sð Þds as a

dependent variable in their basis model (equation (1)) whereas the
indirect ones estimate only two parameters (different from DVR)
by using CT(t) and

R t
0 CT sð Þds as dependent and independent

variables, respectively (equations (9) and (10)).
Those differences caused the direct approaches except for MTLS

to achieve better image quality than the indirect ones (Figure 6).
In general, the variability of the estimated model parameters
depends on the noise level of the dependent variable. Because of
the lower noise level of

R t
0 CT sð Þds in multilinear SRTM, even

without use of any variance reduction technique, the results from
LLS-SRTM or LLS-SRTM-SC generally have lower variability than

Figure 3. Linear relationship between distribution volume ratios (DVRs) from several linear estimation methods based on the simplified
reference tissue model (SRTM) and those from the SRTM using nonlinear least squares (NLS-SRTM) for region-of-interest (ROI) TACs from
dynamic [11C]ABP688 positron emission tomography (PET) data. (A) LLS-SRTM; (B) MTLS1; (C) MTLS2; (D) BFM; (E) MRTM2. Individual points in
each scatter plot correspond to the DVR pairs from individual ROI TACs in the left and right sides of the caudate nucleus, hippocampus,
putamen, and thalamus of total 30 participants. BFM, basis function method; LLS, linear least squares; MRTM2, multilinear reference tissue
model with two parameters; MTLS, mixed LS-TLS; MTLS1, multilinear SRTM based on MTLS considering only tissue concentration CT(t) as noisy
data; MTLS2, multilinear SRTM based on MTLS considering both CT(t) and reference region concentration CR(t) as noisy data; TAC, time-activity
curve; TLS, total least squares.
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those from the indirect methods; instead, LLS-SRTM may have
negative bias caused by the higher-level noise in CT(t). Although
the use of MTLS for multilinear SRTM may increase the variability
at the expense of reducing the bias, the regularization step in
MTLS-SC can remove the additional variability of MTLS.

Conversely, in the indirect methods, the higher-level noise in
CT(t) increases predominantly the variability of the estimated
model parameters rather than the bias. To alleviate the inherently
high variability, the indirect methods estimate only two para-
meters through variance reduction approaches such as the

Figure 4. Transverse planes of representative [11C]ABP688 distribution volume ratio (DVR) parametric images generated using (A) NLS-SRTM
and several methods based on multilinear SRTM without using spatial constraints: (B) LLS-SRTM, (C) MTLS1, and (D) MTLS2. For (A), initial
parameter values for nonlinear fitting were obtained by fitting NLS-SRTM to spatially smoothed dynamic images in advance. MTLS, mixed LS-
TLS; MTLS1, multilinear SRTM based on MTLS considering only tissue concentration CT(t) as noisy data; MTLS2, multilinear SRTM based on
MTLS considering both CT(t) and reference region concentration CR(t) as noisy data; NLS, nonlinear least squares; SRTM, simplified reference
tissue model; TLS, total least squares.

Figure 5. Linear relationship between regional mean values of distribution volume ratio (DVR) images generated using (A) LLS-SRTM-SC, (B)
MTLS1-SC, and (C) MTLS2-SC and the same gold standard used for ROI-level comparison in Figure 3 (the ROI DVRs from NLS-SRTM). All the
data points were obtained after removing outliers. MTLS, mixed LS-TLS; MTLS1, multilinear SRTM based on MTLS considering only tissue
concentration CT(t) as noisy data; MTLS2, multilinear SRTM based on MTLS considering both CT(t) and reference region concentration CR(t) as
noisy data; NLS, nonlinear least squares; ROI, region of interst; SRTM, simplified reference tissue model; TLS, total least squares.
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preestimation of one parameter or the incorporation of parameter
bounds (see section Variance Reduction Techniques). However,
despite estimating a smaller number of parameters, the indirect
approaches showed larger CV values at high noise levels (Figure 2)
and generated noisier DVR images (Figure 6) because the division
process can amplify even small errors.

Noise-Level Assumptions for Independent Variables
The different noise susceptibilities among the direct methods
stem from the different assumptions regarding noise levels of
independent variables in multilinear SRTM, CT(t), and CR(t).
Nevertheless, in the ROI analysis, LLS-SRTM, MTLS1, and MTLS2
showed very similar results that are in good agreements with NLS-
SRTM (Figure 3). Conversely, the effects of their different
assumptions were more evident in the analysis of voxel data;
only MTLS1 generated nearly unbiased DVR images, suggesting
that CR(t) can be considered as almost noise free or to have
negligible noise effect. A similar trend was observed in simulation
studies as noise increased (Figures 1 and 2).
The similar ROI results are based on the low noise levels of the

ROI TAC data for both CT(t) and CR(t) that were reduced by
averaging highly noisy voxel TACs over the corresponding ROI
regions. Hence, CT(t) and CR(t) would have negligible effects
(negligible biases) on the LLS estimates like Figure 3A because
they satisfied the LLS assumption.
The effects of noisy CT(t) and almost noise-free CR(t) on the

parametric images were expressed as negative bias in the results
from LLS-SRTM, additional variability in MTLS1 at the expense of
avoiding such negative bias, and more variability in MTLS2
(Figure 4). The limitations in LLS-SRTM or MTLS1 were overcome in

LLS-SRTM-SC or MTLS1-SC, respectively, by performing additional
processes based on spatial constraints; consequently, good quality
DVR images were generated (Figures 6A and 6B) with regional
mean values equivalent to the gold standard (Figures 7A and 7B).
However, the improvement of the image quality of MTLS2 after
applying a spatial constraint was not sufficient. The spatial
constraint could not effectively compensate for the increased
variability in DVR estimates because of the unnecessary assump-
tion of noise in CR(t).

Bias Reduction Strategies
The LLS method has been widely used to estimate kinetic
parameters from various linear models as well as multilinear SRTM,
BFM, and MRTM2 assessed in this paper.2,4,7–9,12,29,31–33 However,
the noise-induced negative bias in LLS estimates is a well-known
phenomenon in tracer kinetic modeling,15–17

To address the bias issue, various strategies have been
suggested including graphical analysis methods11,30,34,35 (see
Seo et al7 for a recent review of them) and others relied on more
complicated models such as MRTM.4,9,29 Among them, applying
smoothing techniques to the dynamic data may be the most
simple and straightforward strategy to reduce the bias in the LLS
estimates without modifying the associated linear models.
However, spatially smoothing

R t
0 CT sð Þds as well as CT(t) can yield

a loss of spatial resolution and additional partial volume effects;7,33

therefore, the smoothing-based approaches were usually based
on temporal smoothing30,34 or wavelet-based denoising
techniques.11 Conversely, LLS-SRTM-SC uses spatial smoothing
not for

R t
0 CT sð Þds but only for CT(t); as a result, it was robust to the

resolution loss as shown in Figure 6.

Figure 6. Transverse planes of representative parametric images of distribution volume ratio (DVR) acquired using various methods from data
of the same subject as Figure 4. (A) LLS-SRTM-SC, (B) MTLS1-SC, (C) MTLS2-SC, (D) BFM (white arrows point to blob-like artifacts that are
possibly due to the spatial correlation of noise), and (E) MRTM2. BFM, basis function method; MRTM2, multilinear reference tissue model with
two parameters; MTLS, mixed LS-TLS; MTLS1, multilinear SRTM based on MTLS considering only tissue concentration CT(t) as noisy data;
MTLS2, multilinear SRTM based on MTLS considering both CT(t) and reference region concentration CR(t) as noisy data; NLS, nonlinear least
squares; SRTM, simplified reference tissue model; TLS, total least squares.
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The theory of TLS was introduced for the first time to improve a
result from the Logan graphical analysis with plasma input32 by
Varga and Szabo.35 However, successful bias reduction in the
original work was not reproduced well in other studies where the
TLS only partially removed bias.7,11,29,34 The remaining bias is
possibly because of the high noise correlation between the
dependent and independent variables of the Logan model
equations,14,29 which comes from sharing CT(t) in the denomi-
nators of those variables. On the contrary, MTLS-based methods
yielded nearly unbiased results for both ROI and voxel data
(except for outliers because of high variability). This would be
because the dependent and independent variables of multilinear
SRTM show much lower noise correlation than those in the Logan
equations.29

Variance Reduction Techniques
In parametric image generation using MTLS, bias reduction was
accompanied by a variability increase (Figure 4C). To alleviate the
increased variability, the nearly unbiased MTLS estimates were
incorporated after smoothing as a spatial constraint into a
subsequent regularized MTLS problem (MTLS-SC). The DVR images
from MTLS1-SC showed a similar level of spatial variability
compared with the level of LLS images (Figure 6D versus
Figure 4B). For the regularization step, we used the ridge
regression-based regularization strategy4 but with a modification
to regularize the solution in terms of the MTLS cost function. In the
field of numerical analysis, regularization in the context of the TLS
problem has been solidly studied to address stability issues arising
from the ill-conditioning of problems and high-level noise in the
data.36,37 However, the regularization of MTLS has not been
treated explicitly. Hence, in the present study, we derived for the
first time a new formulation of the MTLS problem (equation (4),

Supplementary Appendix C) to use it as the main cost function
in a regularized MTLS problem (equation (5), Supplementary
Appendix D).
As mentioned in section Comparison Between Direct and

Indirect Approaches for Distribution Volume Ratio Estimation, to
enhance the stability of important parameters, MRTM2 (equation
(10)) was proposed as a reduced model of MRTM given by

CT tð Þ ¼ R1CR tð Þ þ k2

Z t

0
CR sð Þds - k02

Z t

0
CT sð Þds; ð11Þ

by fixing one parameter in MRTM using k2R ¼ k2
R1
.9 Despite

decreasing the number of parameters, MRTM2 still showed
relatively poor precision compared with the other methods we
used, yielding lower correlation with gold standard (Figure 7). The
remaining outliers should be partly attributable to high-level noise
in the dependent variable. Similarly, to reduce the variability
because of noise in CT(t) in equation (11), Zhou et al4 suggested a
ridge regression with spatial constraint, but the improvement of
image quality was limited. The poorest results of MRTM2 would be
also attributed to the inaccuracy in predetermined k2R, which can
be amplified by a division process.
Similarly, BFM avoids the variability arising from highly noisy

CT(t) by estimating only two parameters with the benefit of
incorporating parameter bounds to one parameter (k′2) among
three. Although the resulting estimates of the other two
parameters are optimal in terms of LLS for a fixed k′2, the whole
set of estimates is still suboptimal because of the discretely
chosen estimate for k′2, possibly introducing small biases.
Furthermore, the performance of BFM depends on the selection
of the parameter bounds and also the range of DVR values.11 Any
small biases or errors in the set of parameters can be increased by
a division process.

Figure 7. Linear relationship between regional mean values of distribution volume ratio (DVR) images generated using various methods and
the same gold standard used for ROI level comparison in Figure 3 (the ROI DVRs from NLS-SRTM). All the data points were obtained after
removing outliers. Each panel corresponds to a DVR image in Figure 6. (A) LLS-SRTM-SC, (B) MTLS1-SC, (C) MTLS2-SC, (D) BFM, and (E) MRTM2.
BFM, basis function method; MRTM2, multilinear reference tissue model with two parameters; MTLS, mixed LS-TLS; MTLS1, multilinear SRTM
based on MTLS considering only tissue concentration CT(t) as noisy data; MTLS2, multilinear SRTM based on MTLS considering both CT(t) and
reference region concentration CR(t) as noisy data; NLS, nonlinear least squares; ROI, region of interst; SRTM, simplified reference tissue model;
TLS, total least squares.

Parametric neuroreceptor mapping based on the SRTM
S Seo et al

2106

Journal of Cerebral Blood Flow & Metabolism (2015), 2098 – 2108 © 2015 ISCBFM



Reference Region for [11C]ABP688
In previous human studies using [11C]ABP688 PET,19,26,38 the ROI
TACs for various brain regions including the cerebellum or its gray
matter were best fitted by a two-tissue compartment model.
The violation of the single-tissue compartment assumption for the
reference region (and also tissue) would introduce biases to the
gold standard.3 Probably because of such violation, the assess-
ment of the reference region approaches for [11C]ABP688 PET in
humans has been very limited.3,25 Although the possibility of low
specific binding in the cerebellum was raised as a reason for the
violation based on the results from several studies,19,26,28 mGluR5
protein expression in that region was not detected in a
postmortem study.39 Meanwhile, Milella et al25 reported a high
correlation (r= 0.97) between results from NLS-SRTM and two-
tissue compartment model without mentioning the amount of
bias. Furthermore, in several studies, the cerebellum was used as a
reference region for the ratio analysis in [11C]ABP688 PET human
brain studies using a bolus-infusion protocol.39,40

Noise in Reference Region Data
In this study, we assumed the cerebellar TAC (Supplementary
Figure E3) as almost noiseless reference region input function
because of its large size. However, in general, the noise level of the
reference TAC may change depending on several factors such as
size of the region and injection dose.5 With simulation, therefore,
we explored the effect of noise in reference region by increasing
the noise levels up to 10% to cover small-sized reference region or
noisier reference region data. In our simulation, only the results
from LLS-SRTM and LLS-SRTM-SC were notably influenced by the
noise in reference region data (Figures 1 and 2). Although the
noisy input function violates the MTLS1 assumption about noise-
level of independent variables, its impact on the results from
MTLS1 and MTLS1-SC was insignificant. Conversely, MTLS2 yielded
poor results at high levels of tissue noise even if noisy input
function used, because predominance of the tissue noise over the
input noise would give rise to a violation of the MTLS2
assumption. Therefore, we may claim that noise in reference
region can be considered as noiseless in the application of MTLS-
based method, making MTLS1-based methods be optimal choice.

CONCLUSIONS
In the present study, we have compared several SRTM-based
parametric neuroreceptor mapping approaches. Very consistent
results under ROI-level noise proved that the methods considered
are fundamentally equivalent to NLS-SRTM. Meanwhile, discrepancies
between the generated parametric images or the results under high-
level noise indicated different noise susceptibilities among those
methods. Basically, by incorporating different prior information or
spatial constraints, all the methods sacrificed a reasonable or
negligible bias to improve the quality of the parametric image.
However, in general, the methods for multilinear SRTM achieved
better image quality and regional compatibility with the SRTM than
the others; this is because the former methods directly estimate DVR
whereas the latter methods have increasing variability due to division
and directly apply the prior information to the model parameters. Two
different approaches for reducing the bias in multilinear SRTM (LLS-
SRTM-SC and MTLS1-SC) were similarly effective, with slightly better
performance in MTLS1-SC, especially given noisy reference region
data. Unlike MTLS2 and MTLS2-SC, MTLS1 and MTLS1-SC are less
dependent on noise-level assumption for reference region data,
indicating that MTLS1-SC is the optimal choice for parametric imaging.
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