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Simultaneous reconstruction of activity and attenuation using the

maximum-likelihood reconstruction of activity and attenuation

(MLAA) augmented by time-of-flight information is a promising

method for PET attenuation correction. However, it still suffers from
several problems, including crosstalk artifacts, slow convergence

speed, and noisy attenuation maps (μ-maps). In this work, we de-

veloped deep convolutional neural networks (CNNs) to overcome

these MLAA limitations, and we verified their feasibility using a clin-
ical brain PET dataset. Methods: We applied the proposed method

to one of the most challenging PET cases for simultaneous image

reconstruction (18F-fluorinated-N-3-fluoropropyl-2-β-carboxymethoxy-
3-β-(4-iodophenyl)nortropane [18F-FP-CIT] PET scans with highly

specific binding to striatum of the brain). Three different CNN

architectures (convolutional autoencoder [CAE], Unet, and Hybrid

of CAE) were designed and trained to learn a CT-derived μ-map
(μ-CT) from the MLAA-generated activity distribution and μ-map

(μ-MLAA). The PET/CT data of 40 patients with suspected Parkinson

disease were used for 5-fold cross-validation. For the training of

CNNs, 800,000 transverse PET and CT slices augmented from 32
patient datasets were used. The similarity to μ-CT of the CNN-

generated μ-maps (μ-CAE, μ-Unet, and μ-Hybrid) and μ-MLAA was

compared using Dice similarity coefficients. In addition, we com-
pared the activity concentration of specific (striatum) and nonspecific

(cerebellum and occipital cortex) binding regions and the binding

ratios in the striatum in the PET activity images reconstructed using

those μ-maps. Results: The CNNs generated less noisy and more
uniform μ-maps than the original μ-MLAA. Moreover, the air cavities

and bones were better resolved in the proposed CNN outputs. In

addition, the proposed deep learning approach was useful for

mitigating the crosstalk problem in the MLAA reconstruction.
The Hybrid network of CAE and Unet yielded the most similar

μ-maps to μ-CT (Dice similarity coefficient in the whole head 5
0.79 in the bone and 0.72 in air cavities), resulting in only about a

5% error in activity and binding ratio quantification. Conclusion:
The proposed deep learning approach is promising for accurate

attenuation correction of activity distribution in time-of-flight PET

systems.
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The attenuation correction of annihilation photons is a critical
procedure in PET image generation for providing accurate quan-

titative information on the radiotracer distribution. In current PET/

CT systems, the linear attenuation coefficient (m) for 511-keV

photons is converted from the CT Hounsfield unit (1,2). In PET/

MRI, various approaches, including Dixon and ultrashort echo-

time MRI segmentation- and atlas-based algorithms, have been

suggested (3–6). However, a limitation of CT-based PET attenua-

tion correction is the artifacts attributed to the position mismatch

between the PET and CT scans (7–9). MRI-based PET attenuation

correction remains far from ideal on account of the inaccurately

estimated linear attenuation coefficients (m-values) in the skeletal

structures and heterogeneous soft tissues (10–12). In particular,

bones are poorly identified in whole-body PET/MRI studies (13)

and local MRI signal loss produced by metallic implants results in

the considerable error in image segmentation.
Simultaneous reconstruction of activity and attenuation using

only emission data is a promising method for the PET attenuation

correction augmented by the recent advancement of time-of-

flight technology (14–17). Because no anatomic images are

necessary for the attenuation correction if the simultaneous recon-

struction works properly, it is a potentially significant approach to

overcoming the above-mentioned limitations of PET attenuation

correction in PET/CT and PET/MRI (18–20). Among the simul-

taneous reconstruction algorithms for PET attenuation correction,

the maximum likelihood reconstruction of activity and attenuation

(MLAA) method has the advantages of providing an m-map and

enabling the incorporation of prior knowledge of the m-values for

global scaling (15,16,21,22). However, because of the limited tim-

ing resolution of current clinical PET scanners, the MLAA suffers

from several problems, including the crosstalk artifacts (between

activity and m-maps), slow convergence speed, and noisy m-maps

(23,24).
Recently, deep learning has outperformed the traditional machine

learning and Bayesian approaches in many different applications
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(25,26). In addition, recent studies have shown the remarkable
advancements in the noise reduction of CT based on deep learning
technology (27,28). Accordingly, it is of interest whether the deep
learning approach can mitigate the limitations of MLAA simulta-
neous reconstruction. In this study, we therefore designed deep
convolutional neural networks (CNNs) to be suitable for MLAA
output (activity distribution and m-map) processing. We examined
the quality improvement of MLAA m-maps and emission PET
images by applying deep learning with a focus on noise and cross-
talk reduction.
We applied this new approach to one of the most challenging clini-

cal PET cases for simultaneous reconstruction (brain dopamine
transporter imaging). The crosstalk between the activity and atten-
uation is severe and the background noise level is high in the
dopaminergic PET images because of the highly specific binding of
the tracers only in the striatum of brain.

MATERIALS AND METHODS

Dataset

The 18F-fluorinated-N-3-fluoropropyl-2-b-carboxymethoxy-3-b-(4-
iodophenyl)nortropane (18F-FP-CIT) brain PET/CT scan data of 40

patients (16 men and 24 women; mean age 6 SD, 67.5 6 9.2 y) with
suspected Parkinson disease were retrospectively analyzed. In 14 of

the 40 subjects, the tracer uptake in both basal ganglia was preserved.
The retrospective use of the scan data and waiver of consent were

approved by the Institutional Review Board of our institute. The PET/
CT data were acquired using a Biograph mCT 40 scanner (Siemens

Healthcare). The PET scanner achieves an effective timing resolution
of 580 ps. The PET/CT imaging was performed for 10 min at a single

PET bed position 90 min after the intravenous injection of 18F-FP-CIT
(189.7 MBq on average). The head of each participant was positioned

in a head holder attached to the patient bed, and the PET/CT scan
followed the routine clinical protocol for brain studies (topogram, CT,

and emission PET scans). The CT images were reconstructed in a
512 · 512 · 149 matrix with a voxel size of 0.59 · 0.59 · 1.5 mm

and converted into the m-map for 511-keV photons (m-CT, 200 ·
200 · 109; 2.04 · 2.04 · 2.03 mm).

We reconstructed all datasets using ordered-subset expectation maxi-

mization (OSEM) with m-CT (3 iterations, 21 subsets, 5-mm gaussian
postprocessing filter) and MLAA with the time-of-flight information

(8 iterations and 21 subsets, 5-mm gaussian postprocessing filter) into
200 · 200 · 109 matrices. To correct the global scaling problem, the

boundary constraint suggested in the original time-of-flight MLAA pa-
per (15) was applied during the attenuation image estimation in the

MLAA.
To evaluate the performance of proposed CNNs, we performed 5-

fold cross-validation. The 40 patient datasets were randomly parti-
tioned into 5 groups (8 in each group). The CNNs were trained with

4 groups and tested with the other one. This cross-validation process
with different test sets was repeated 5 times. For the CNN training and

testing, the activity distribution and m-map derived from the MLAA
(l-MLAA and m-MLAA) were used as input X, and m-CTwas used as

output Y. All the input and output images were used in 2-dimensional
slice format.

Network Architecture

We tested 3 different CNN architectures (Fig. 1). The first one was

the convolutional autoencoder (CAE). The autoencoder was originally
proposed for unsupervised feature learning; nevertheless, it also

showed good performance for image restoration and denoising net-
works (29). The second one was Unet, which showed excellent per-

formance in various tasks, including image segmentation and denoising
(30). Unet structures are similar to those of the CAE. However,

unlike CAE, Unet supplements the contracting path that enables high-
resolution features to be combined in the output layers. The third one

was the Hybrid form of CAE and Unet, which we propose herein to
prevent the noise propagation from the high-frequency feature of the

PET activity distribution (Hybrid network).
The 3 networks (CAE, Unet, and Hybrid) consisted of convolution

layers, rectified linear units (an activation function defined as f(x) 5
max(0, x) and used to provide nonlinearity in the learning model), 2 ·
2 max-pooling layers, deconvolution layers, and a 1 · 1 convolution

layer (Fig. 1). The max-pooling, a reduction operation for calculating
the maximum value in each rectangular window, was required to re-

duce the number of parameters of the network and provide a shift-
invariant characteristic to CNN. In the first layer, we performed a

convolution with a 3 · 3 · 2 kernel to merge
2 input datasets (MLAA activity distribution

and m-map). Each convolution and deconvo-
lution layer except the first convolution layer

was composed of a 3 · 3 kernel and rectified
linear units. The last 1 · 1 convolution layer

performed a role in scaling. The number of
feature maps in the first layer was empiri-

cally determined to yield the best results.
We implemented the networks using the

TensorFlow, an open-source library for deep
learning (31).

Data Augmentation and Training

Because the number of parameters in the

deep networks was too large to be estimated
from the limited patient dataset, we had to

increase the training data (data augmenta-
tion). We conducted the data augmentation by

rotating the images by 26�, 23�, 0�, 3�, and
6� in 3-dimensional orthogonal planes (5 · 5 ·
5 5 125 times augmentation). Additionally,
we used images flipped in the transverse plane

to double the training set. Accordingly, the
total number of slices available for training

FIGURE 1. CNN architectures used to learn μ-CT from l-MLAA and μ-MLAA. (A) CAE. (B) Unet.

(C) Hybrid network of CAE and Unet. Green and red vertical strips at far left indicate inputs to

CNN, and red stripes at right indicate output. Each box represents multichannel feature map.

Number of feature maps and dimension of each feature map are denoted on interior and bottom

of box. Data flow is left to right through contracting path to capture context and symmetric

expanding path to recover image. Arrows stand for copying feature maps, and sky-blue boxes

are copied feature map.
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was 32 (patient) · 109 (transverse plane) · 125 (rotating) · 2 (flip) 5
872,000. Among them, only 800,000 slices were used as the training set
after eliminating slices with only negligibly small pixel values and the

last 5 slices at the bottom.
The cost function was the L2-norm between the MLAA m-map and

m-CT. The cost function was minimized using the adaptive moment
estimation method (32). Weights in the networks were initialized

using the Xavier initialization method, which engendered a faster
convergence rate compared with uniform or gaussian random initial-

ization (33). To prevent network overfitting, a part of the nodes was
dropped out (34). In each convolution layer, the dropout probability

(ratio of remaining node number of total) was 0.7. The batch size was
60, and the number of epochs (the number of times the algorithm sees

the entire dataset) was 6. When using the Ryzen 1700X central pro-

cessing unit with a GTX 1080 graphics processing unit, each epoch
involved approximately 300 min.

Image Analysis

The m-maps obtained using the MLAA before (m-MLAA) and after
(m-CAE, m-Unet, and m-Hybrid) applying the deep CNNs to the test

set were compared with the m-CT, the ground truth. The similarity of
m-maps was evaluated using the Dice similarity coefficient (D) (3,35),

which measured the overlap of the segmented bone and air regions
according to the following equation:

D 5
2 · Nðm-CT\m-PETÞ
Nm-CT 1Nm-PET

;

where Nm-CT and Nm-PET are, respectively, the number of bone (or air)

voxels in the m-maps derived from CT and PET (emission only) data
(3,35). N(m-CT\m-PET) indicates the number of overlapped voxels be-

tween CT and PET m-maps. In the m-maps, the voxels having a
m-value of more than 0.1134 (5300 Hounsfield units) were classified

as bone; those having a m-value of less than 0.0475 (5 2500 Houns-
field units) were denoted as air. Additionally, the voxels having a

m-value between them were regarded as soft tissue (3,36).
For comparison with the ground truths of the PET activity distri-

bution obtained using OSEM reconstruction with m-CT, the activity
images were generated using the same OSEM algorithm and param-

eters (8 iterations and 21 subsets, 5-mm gaussian postprocessing filter)
with m-MLAA, m-CAE, m-Unet, and m-Hybrid (Fig. 2). The ground

truth PET activity was spatially normalized using an in-house 18F-FP-
CIT PET template and Statistical Parametric Mapping software (ver-

sion 8; http://www.fil.ion.ucl.ac.uk/spm). The same transformation
parameters were applied to the others. Then, we measured the PET

activity concentration in 4 regions of interest (head of caudate nucleus,
putamen, occipital cortex, and cerebellum) using an automatic region-

of-interest delineation method with statistical probabilistic anatomic
maps (37,38). For the comparison, the relative ratio of specific binding

([Cspecific – Cnonspecific]/Cnonspecific) was calculated (Cspecific and Cnonspecific

are the activity concentrations in specific and nonspecific [cerebellum

or occipital cortex] binding regions) (3).

RESULTS

The CNNs remarkably reduced the noise and crosstalk in
m-MLAA. In Figure 3, the CNN-generated m-maps (m-CAE,
m-Unet, and m-Hybrid) of a patient are compared with the m-CT
and m-MLAA. As expected, the CNNs generated less noisy
and more uniform images than m-MLAA. Among the CNNs, the

CAE and Unet yielded the most blurred
and sharpened m-maps, respectively. The
air cavities and bones were better resolved
in the proposed CNN outputs than with
the m-MLAA. However, the details of
these structures did not perfectly match
the m-CT. Moreover, slight discontinuities
of air cavities and bone structures still
appeared in the sagittal and coronal planes
because of the application of the CNNs
to the 2-dimensional slices. Figure 3 also
shows that the proposed deep learning ap-
proach is useful for mitigating the crosstalk
problem in MLAA reconstruction. The red
arrows on m-MLAA point to the striatal
region where the crosstalk between activity
and attenuation is substantial in MLAA
outputs. This artifact disappears in the
m-maps corrected by deep learning (m-CAE,
m-Unet, and m-Hybrid).

FIGURE 2. Flow chart of image analysis. For comparison, emission

PET sinogram was reconstructed using μ-maps obtained using MLAA

before (μ-MLAA) and after (μ-CAE, μ-Unet, and μ-Hybrid) applying deep

CNNs and ground truth μ-CT. TOF 5 time of flight.

FIGURE 3. Comparison of CNN outputs (μ-CAE, μ-Unet, and μ-Hybrid) to μ-MLAA and μ-CT.
Red and yellow arrows indicate, respectively, crosstalk artifacts and bone estimation error shown

in μ-MLAA.
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The CNN-generated m-maps showed higher similarity with the
m-CT than the original m-MLAA did. In Figure 4, root-mean
square errors from the m-CT are plotted across the slice axial
location (average of all 40 test subjects). The CNN-generated
m-maps yielded fewer errors than m-MLAA in almost all axial
locations. The Hybrid network outperformed the CAE and Unet
at the top of the head, and it achieved approximately 50% error
reduction relative to the original MLAA in the m-value estimation.
The bias and root-mean square error of m-maps relative to the
m-CT are summarized in Supplemental Figure 1; supplemental
materials are available at http://jnm.snmjournals.org.
As shown in Table 1, the Dice similarity coefficients measured

in the whole head and only the cranial bone regions for air and
bone were generally much higher in the CNN-generated m-maps.
The SD of the Dice similarity coefficients were considerably
smaller in the CNN-generated m-maps than in those of m-MLAA,
indicating improvement in the consistency of m-value estimation.
In m-MLAA, the skull intensity and thickness were under- or
overestimated in some regions (yellow arrows in Fig. 3). However,
the CNNs properly corrected these errors. Among the CNNs, the
Hybrid network and CAE yielded the respective highest and low-
est Dice similarity coefficients in all the regions. The Supplemen-
tal Figure 2 shows that these results were consistent across all the
cross-validation sets.
The enhancement in m-map quality and accuracy by applying

the deep CNNs improved the accuracy in the quantification of the
regional activity and binding ratio of 18F-FP-CIT PET. The per-
centage error map of the spatially normalized activity distribution

(average of 40 test subjects) is compared in Figure 5, indicating
the reduced error in activity distribution with Unet and Hybrid
network. Meanwhile, Figure 6 shows the percentage error in ac-
tivity and binding ratio estimation relative to the ground truth
(OSEM with m-CT). The m-MLAA yields a negative bias in ac-
tivity quantification that is higher than 10% in the occipital cortex
and striatum. The error is reduced using m-Unet and m-Hybrid.

DISCUSSION

Supervised and unsupervised machine learning methods based
on artificial neural networks have been investigated for various
biomedical engineering applications (39,40). Learning the differ-
ence between the patient and control data and predicting the prog-
nosis after treatment based on region-of-interest–driven features
were the main application field in nuclear medicine image interpre-
tation and processing (41–43). Additionally, data-driven blind
source separation techniques based on an unsupervised neural net-
work were successfully applied to dynamic PET data for the sepa-
ration of various physiologic and anatomic components (44–47).
The use of artificial neural network techniques has been also sug-
gested for more accurate and reliable determination of the annihi-
lation photon interaction position in PET detector blocks (48,49).
Meanwhile, deep learning, an emerging technology in machine
learning, is showing its initial impact on the medical imaging field
(50). However, problem-specific design and optimization of deep
networks and rigorous validation with real clinical data are required
to justify the medical use of this emergent technology.
One of the main limitations of simultaneous activity and

attenuation reconstruction is the crosstalk artifacts between the
activity and attenuation in output images. These crosstalk artifacts
are most severe in regions with a high contrast against the
background, which may be the abnormal uptake of radiotracer
requiring high accuracy in activity quantification. The deep CNNs
proposed in this paper outperformed the original MLAA algorithm
in suppressing the crosstalk and noise in the dopamine transporter
PET images. The mitigation of crosstalk artifacts by the CNNs
was not simply the consequence of reducing the noise (or
suppressing the high-frequency features) in m-maps and recogniz-
ing the location of crosstalk artifacts (Supplemental Fig. 4). Only
when the activity and attenuation information were jointly pro-
cessed by the 3-dimensional convolution kernel at the first layer of
the networks was this crosstalk successfully suppressed. The joint
feature learning from both the activity and attenuation at the early
stage was also useful for the accurate restoration of bone struc-
tures and air cavities in m-maps (Fig. 3). The lower radioactivity in

FIGURE 4. Root-mean square errors (RMSE) relative to μ-CT plotted

across slice axial location (average of 40 test sets).

TABLE 1
Dice Similarity Coefficients with μ-CT for Whole Head and Cranial Bone Region

Whole head Cranial region

Method Bone Air Bone Air

MLAA 0.374 ± 0.058 0.317 ± 0.070 0.399 ± 0.063 0.426 ± 0.062

CNN (CAE) 0.717 ± 0.047 0.513 ± 0.057 0.747 ± 0.047 0.523 ± 0.063

CNN (Unet) 0.787 ± 0.042 0.575 ± 0.047 0.801 ± 0.043 0.580 ± 0.053

CNN (Hybrid) 0.794 ± 0.037 0.718 ± 0.048 0.810 ± 0.038 0.738 ± 0.044

Data are mean ± SD. Results of analysis of variation and post hoc tests are shown in Supplemental Figure 3.
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the bone and air relative to the soft tissue and cerebrospinal fluid
would enable the CNNs to learn how to correctly differentiate
them.
Most CNN parameters were empirically determined through

trial and error. The performance of CNN was not much influenced
by the kernel size (i.e., 5 or 7 yielded results similar to 3). The 20
feature maps in the first layer yielded the lowest and most stable
learning curve. In contrast, the learning curve did not converge
with feature maps smaller than 12 and showed an overshoot at
early iterations with the maps larger than 28. Learning rate and
other parameters were also determined mostly while observing the
learning curves.
The CNNs trained in this study yielded better m-maps than our

multiphase-level-set–based ultrashort echo-time MRI segmenta-
tion (3) with respect to the similarity to m-CT. Particularly, the
Dice similarity coefficients for air cavities were remarkably higher
in the present study (0.72 vs. 0.61 in the whole head and 0.74 vs.
0.62 in the cranial region). Although the Hybrid method has a
higher Dice coefficient than Unet, Unet performs slightly better
than the Hybrid method in activity quantification (Figs. 5 and 6)

because the Dice coefficient measures similarity in terms of segmented
region overlap but does not measure similarity in terms of quantitative
values. As shown in Supplemental Figure 1, the Unet yielded lower
bias in average m-values than the other methods, explaining why the
activity maps estimated by the Hybrid method are less accurate than
those estimated by Unet despite the better segmentation.
There are some existing works on applying deep learning to

predict CT m-maps based on T1-weighted MR images or a com-
bination of Dixon and zero-echo-time images (51,52). The ap-
proach using the Dixon and zero-echo-time images would be
more physically relevant than the T1-weighted MRI-based ap-
proach because the Dixon and zero-echo-time sequences provide
more direct information on the tissue composition than does the
T1 sequence. The method proposed in this study has the same
physical relevance as the Dixon or zero-echo-time approach but
does not require the acquisition of additional MR images.

CONCLUSION

In this work, we developed deep CNNs to overcome the main
limitations of the MLAA simultaneous reconstruction algorithm.
We verified their feasibility using an 18F-FP-CIT brain PET data-
set. The proposed deep learning approach remarkably enhanced
the quantitative accuracy of simultaneously estimated MLAA
m-maps by reducing the noise and crosstalk artifacts. The Hybrid
network of CAE and Unet yielded m-maps the most similar to
m-CT (Dice similarity coefficient in the whole head 5 0.79 in
the bone and 0.72 in air cavities), resulting in only about a 5%
error in activity and binding ratio quantification. Because the pro-
posed method requires no transmission data, anatomic image, or
atlas/template for PET attenuation correction, it has potential to
replace the conventional attenuation correction methods in stand-
alone PET, PET/CT, and PET/MRI.
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FIGURE 5. Percentage error map of spatially normalized activity dis-

tribution (average of 40 test sets).

FIGURE 6. Percentage error in activity (A) and binding ratio (B) estimation relative to ground truth (OSEM with μ-CT). Each horizontal bar and

vertical box indicates median and SD, respectively. In B, specific and nonspecific regions for binding ratio calculation are indicated as “specific

(nonspecific).”
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