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1.  Introduction

Positron emission tomography (PET) is an essential imaging device which provides diagnostic information in a 
wide range of disease states (Phelps 2000, Kim 2016, Ahn 2017). PET provides tomographic images by detecting 
a pair of 511 keV annihilation gamma rays generated from the radiopharmaceuticals distributed in a patient’s 
body. When a 511 keV gamma ray enters a PET detector, the gamma ray deposits its energy by undergoing 
photoelectric (PE) absorption or Compton scattering within a PET detector. For the latter case, the scattered 
photon and emitted photoelectron deposits a portion of their energy in more than one crystal element, and 
this phenomenon is referred to as an inter-crystal scattering (ICS) event. ICS events cause the mis-positioning 
of gamma interaction, resulting in false lines-of-response (LOR). These false LOR lead to a degraded image 
resolution and contrast (Surti and Karp 2018). Since the 511 keV gamma used in PET has a large cross-section 
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Abstract
Here, we propose a novel method to identify inter-crystal scattering (ICS) events from a PET detector 
that is even applicable to light-sharing designs. In the proposed method, the detector observation 
was considered as a linear problem and ICS events were identified by solving this problem. Two 
ICS identification methods were suggested for solving the linear problem, pseudoinverse matrix 
calculation and convex constrained optimization. The proposed method was evaluated based on 
simulation and experimental studies. For the simulation study, an 8  ×  8 photo sensor was coupled to 
8  ×  8, 10  ×  10 and 12  ×  12 crystal arrays to simulate a one-to-one coupling and two light-sharing 
detectors, respectively. The identification rate, the rate that the identified ICS events correctly 
include the true first interaction position and the energy linearity were evaluated for the proposed 
ICS identification methods. For the experimental study, a digital silicon photomultiplier was 
coupled with 8  ×  8 and 10  ×  10 arrays of 3  ×  3  ×  20 mm3 LGSO crystals to construct the one-to-
one coupling and light-sharing detectors, respectively. Intrinsic spatial resolutions were measured 
for two detector types. The proposed ICS identification methods were implemented, and intrinsic 
resolutions were compared with and without ICS recovery. As a result, the simulation study showed 
that the proposed convex optimization method yielded robust energy estimation and high ICS 
identification rates of 0.93 and 0.87 for the one-to-one and light-sharing detectors, respectively. The 
experimental study showed a resolution improvement after recovering the identified ICS events into 
the first interaction position. The average intrinsic spatial resolutions for the one-to-one and light-
sharing detector were 1.95 and 2.25 mm in the FWHM without ICS recovery, respectively. These 
values improved to 1.72 and 1.83 mm after ICS recovery, respectively. In conclusion, our proposed 
method showed good ICS identification in both one-to-one coupling and light-sharing detectors. We 
experimentally validated that the ICS recovery based on the proposed identification method led to an 
improved resolution.
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in Compton scattering, ICS is a common phenomenon in PET systems (Comanor et al 1996). The occurrence 
of ICS increases in high-resolution applications with narrower crystal elements (Shao et al 1996). Moreover, 
the occurrence of ICS depends on the linear attenuation coefficient of scintillation materials, as well as detector 
and system geometries. Based on our simulation study, approximately 35% of events detected within the 350–
650 keV energy window undergo ICS in a PET detector with a 10  ×  10 array of 3  ×  3  ×  20 mm3 LSO crystals. 
Hence, the resolution degradation can be minimized and the system sensitivity can be maximized by identifying 
the interaction positions and deposited energies of the ICS event and recovering it into the true first interaction 
position.

To identify ICS events, the individual signal readout from a one-to-one coupled crystal and photo sensor pixel 
is considered as a feasible method, as shown in figure 1(a) (Rafecas et al 2003, Pratx and Levin 2009). However, 
the one-to-one coupling design has limitations in terms of high-resolution applications. In particular, in the case 
of using a silicon photomultiplier (SiPM) as a photo sensor, it is technically challenging to produce multi-pixel 
photo sensors with small pixel sizes while avoiding performance degradation (e.g. energy linearity, packing frac-
tion, etc) (Roncali and Cherry 2011). Therefore, most current PET detectors use a light-sharing design by cou-
pling multiple crystal elements with multiple photo sensor pixels as shown in figure 1(b) (Levin and Zaidi 2007). 
However, it is hard to identify ICS events in light-sharing PET detectors, because the light outputs from two or 
more crystal elements are shared by multiple photosensor pixels. Image reconstruction with a point spread func-
tion (PSF) modeling technique is an alternative solution for mitigating resolution degradation by including ICS 
in the model (Alessio et al 2006, Panin et al 2006). However, this approach does not realize event-by-event ICS 
correction and some image artifacts (e.g. edge artifacts) were observed (Rahmim et al 2013).

Recovering the ICS event into the first interaction position is important as well as identifying the ICS interac-
tion positions and energies. Several groups have previously investigated techniques to choose the first interaction 
position. Examples include choosing the interaction position with the maximum or second maximum energy 
deposition (Comanor et al 1996, Shao et al 1996, Surti and Karp 2018) and choosing the interaction position that 
satisfies the Compton kinematics (Rafecas et al 2003). Gross-Weege et al (2016) proposed a maximum-likeli-
hood-based positioning algorithm to identify the first interaction position by using the measured light distribu-
tion and the corresponding probability density functions. Lage et al (2015) suggested a proportional method for 
recovering inter-detector scattering events, which distributes multiple coincidence events among their possible 
LOR using the relative proportions of double coincidences in the corresponding ones. The proportional method 
is presented in equation (8), and Lage et al (2015) has analytically shown that this equation (8) is a maximum-
likelihood solution.

In this study, we propose a new method to classify and identify ICS events from a PET detector. We consider 
detector observation to be a linear problem, and ICS events were identified by solving this problem. The proposed 
method is applicable in light-sharing designs, even with a multiplexing readout scheme, which is something that 
has not been suggested or developed in the publications. In this study, we investigated the proposed ICS identifi-
cation method based on Monte Carlo simulation and experimental studies. Based on this new ICS identification 
method, ICS event positions and energies were identified and used to determine the first interaction position in 
order to see the impact of ICS correction.

2.  Materials and methods

2.1.  ICS event identification
2.1.1.  Proposed algorithm
Suppose a PET detector consisted of n scintillation crystal elements coupled to m photo sensor pixels as in 
figure 1. Let us consider that PE absorption occurs in a detector and a 511 keV gamma ray fully deposits its energy 
in a single crystal as shown in figure 1. Here, we define the observation of a single PE event as a vector (y), which 
consists of m detector responses (photo sensor pixel values) as in equation (1).

y = [y1, . . . , ym]
T.� (1)

Consider that an ICS event occurs at the ith and jth crystals (i, j ∈ n) while depositing energies of Ei and Ej  
(Etotal = Ei + Ej), as shown in figure 1. Then, the observation y of an ICS event can be expressed as the sum of 
independent observations of yi and yj multiplied by the corresponding energy ratios as shown in equation (2). 
In equation(2), yi and yj are independent detector observations when PE absorption occurs at the ith and jth 
crystals, respectively. Here, we assume that ICS events (multiple hit events) can be expressed as the superposition 
of independent PE events (single hit events)

y = yi × Ei/Etotal + yj × Ej/Etotal.� (2)

Equation (2) can be simply converted into a matrix formation

Phys. Med. Biol. 63 (2018) 115015 (13pp)
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y = Ax;




y1

...

ym


 =




a1,1 · · · a1,n

...
. . .

...

am,1 · · · am,n


×




x1

...

xn


 ,� (3)

where y is an m-dimensional vector of a single ICS event observation, A is an [m  ×  n] matrix of m characteristic 
detector responses for n crystals, and x is an n-dimensional vector containing the energy ratios for n crystals. 
The vector y is a measured value from the detector response from a single gamma event. The matrix A is also 
a measured value that can be generated from detector data sets by calculating the mean detector responses for 
each crystal position. Consequently, finding vector x, which represents the deposited energy ratios at n crystal 
elements of a single gamma event, we can identify the ICS event positions and corresponding deposited energies.

To find x, we compared three different ICS identification methods:

	 (1)	� Method 1: maximum peak detection

max(y)� (4)

	 (2)	� Method 2: pseudoinverse matrix calculation

x =
(

ATA
)−1

ATy.� (5)

Figure 1.  PET detectors consisting of n scintillation crystals and m photo sensor pixels and the observed detector responses (photo 
sensor pixel values). (a) In the one-to-one coupling design, crystals (n  =  64) were individually coupled to the photo sensor pixels 
(m  =  64). (b) In the light-sharing design, 10  ×  10 arrays of crystals (n  =  100) were coupled to 8  ×  8 photo sensor pixels (m  =  64).

Phys. Med. Biol. 63 (2018) 115015 (13pp)
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	 (3)	� Method 3: convex constrained optimization

arg min
x

‖y − Ax‖2

subject to x > 0,∑
x = 1.

�

(6)

Method 1 is a typical approach used in a one-to-one coupling detector with an individual signal readout and 
identifies the ICS events by finding maximum values from the observation (y). Method 1 was tested as a reference. 
Methods 2 and 3 are the ICS identification methods proposed in this study which identify the ICS event from 
the energy ratio vector (x). Method 2 simply calculates a pseudoinverse matrix to solve the linear problem in 
equation (5). However, a pseudoinverse can result in negative entries in x. Hence, method 3 is proposed to solve 
the linear problem with the constraints given in equation (6). The solution was found using convex constrained 
optimization. To solve the convex optimization problem, a Matlab-based CVX program (Grant and Boyd 2011) 
was used.

2.1.2.  Event classification and identification
As the first step of event classification and identification, matrix A was calculated as described in figure 2(a). A 
flood histogram (a 2D histogram of the gamma interaction positions) was generated by calculating the energy-
weighted mean of the pixel values from the listmode detector dataset. Since most of ICS events are distributed in 
between the crystals in the flood histogram, an anger mask is applied to the flood histogram to reject ICS events 
(Ling et al 2007). From the masked flood histogram, the detector responses of the n crystals were extracted. 
Matrix A was then generated by calculating the average of the m detector responses at each crystal position.

Based on observation y and the calculated matrix A, we can find vector x by using three different identifica-
tion methods, as explained in section 2.1.1. Events were classified into two event types of PE absorption and ICS 
events based on the energy ratio vector x. Each event type was classified according to the following criteria, while 
the constant c was determined based on the simulation.

	(1)	� PE events: max(x)
second max(x) > c

	(2)	� ICS events: max(x)
second max(x) � c

The interaction positions and deposited energies of classified ICS events were identified by using indices 
and values of the energy ratio vector x. Considering the case where an ICS event occurs only once, the indices of 
the two maximum values in x were determined to be the interacting crystal positions, while the values of x were 
determined to be the deposited energy ratios. Figure 3 shows the energy ratio vector x of the typical PE and ICS 
events acquired from convex optimization.

The ‘identification rate’ was calculated using equation (7) to evaluate the performance of the methods, that 
is to say, the number of identified ICS events that include the true first interaction position divided by the total 
number of ICS events. The energy linearity and correlation were also evaluated by conducting a linear fit between 
the true energy values and estimated energies.

Figure 2.  (a) Matrix A calculation. From the detector irradiated with a point source, a flood histogram (red dots) was acquired. 
An anger mask was applied to the flood histogram, which is represented by the white contour. The detector responses of each 
crystal position were extracted, and the mean detector responses of each crystal position were calculated consequently. (b) The 
experimental setup for the intrinsic spatial measurement.

Phys. Med. Biol. 63 (2018) 115015 (13pp)
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Identification rate =
# of ICS events including the true first interaction position

# of total ICS events
.

� (7)

2.2.  Simulation study
2.2.1.  GATE Monte Carlo simulation setup
To evaluate the proposed methods, a simulation study was conducted using a GATE v.7.0 Monte Carlo 
simulation toolkit with optical photon tracking (Jan et al 2004, 2011). In the simulation, the medium surfaces 
and interactions at the medium boundaries were simulated based on the UNIFIED model (Levin and Moisan 
1996). In the UNIFIED model, the surface is composed of small micro-facets. The surfaces were defined by 
specifying the standard deviation (sigma-alpha) of the Gaussian distribution of the micro-facets around the 
average surface normal. The interactions at the boundaries are simulated based on the micro-facet orientations 
and refractive indices.

The simulated detector consists of arrays of polished LSO (Lu2SiO5; d  =  7.5 g cm−3; refractive index 1.82) 
crystals. While the typical LSO has a light yield of 26 000 photons MeV−1, here, we assigned the light yield to be 
10 400 photons MeV−1 by considering a 40% photo sensor photon detection efficiency (PDE)of the photo sen-
sor used in this study. LSO crystals were wrapped with specular reflectors with 98% reflectivity, and all the gaps 
between the crystals were filled with air. All the polished crystal surfaces were set to a sigma-alpha value of 0.1.

The photo sensor was simulated to have the same geometry as a digital silicon photomultiplier (dSiPM; 
Philips Digital Photon Counting, Aachen, Germany). The diSiPM consists of 8  ×  8 pixels, and each pixel has a 
dimension of 3.2  ×  3.8775 mm2. The pixel array was covered with a 0.1 mm thick glass entrance (d  =  2.5 g cm−3; 
refractive index 1.5). The photo sensor and crystal array were optically coupled with a 0.1 mm thick optical grease 
(d  =  1.0 g cm−3; refractive index 1.465). The sigma-alpha value was set to 0.0 for the pixel and 0.1 for the glass 
entrance and optical grease surfaces. All optical photons entering the pixel were detected with 100% efficiency. 
Here, we did not incorporate any SiPM sensitivity variations or noise properties.

For the simulation study, three detector configurations with different crystal-to-sensor coupling ratios were 
used, as shown in table 1. The crystal-to-sensor coupling ratio defined here corresponds to the ratio of the num-

ber of crystal elements to the number of photo sensor pixels.
The detector was irradiated using an isotropic 511 keV gamma point source that was located 10 cm apart 

from the detector. Moreover, three representative signal readout schemes were applied to the simulated 8  ×  8 
detector responses in order to investigate the effect of signal multiplexing on the proposed algorithm.

	(1)	� Individual readout (1:1 signal multiplexing)
	(2)	� Row-and-column sum (RC sum) readout (4:1 signal multiplexing)
	(3)	� Four corner readout (16:1 signal multiplexing)

Identification rate and energy linearity performances were evaluated for the three detector configurations 
with different signal readout schemes by using the three identification methods. All the simulation cases were 
evaluated with approximately 40 000 gamma events that entered within the energy window of 350–650 keV.

2.2.2.  ICS event recovery schemes
As mentioned in the introduction, recovering ICS events into the first interaction position is important as well 
as identifying ICS interaction positions and energies. The ICS recovery schemes were initially investigated based 

Figure 3.  The energy ratio vectors (x) of the one-to-one coupling detector, which represent the deposited energy ratios at 8  ×  8 
crystal positions for the representative (a) PE absorption and (b) ICS events.

Phys. Med. Biol. 63 (2018) 115015 (13pp)
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on simulation. From the simulation data, where the detector was irradiated with the cone beam, the ICS events 
were identified with the convex optimization method. The identified ICS events were then recovered using the 
maximum energy deposition (Shao et al 1996) and proportional methods (Lage et al 2015). The ICS recovered 
results were compared to the results without ICS recovery and the true first interaction values. In this study, we 
chose to use the proportional method, as originally suggested by Lage et al (2015) as in equation (8) below. In this 
study, we adopted the proportional method that originally recovers inter-detector scattering events in the system 
level and extended the method to be used to recover ICS events in the detector level.

LORi−j = Di−j +

n∑
k

(
Di−j

Di−j + Di−k + Dj−k

)
Ti−j−k.� (8)

In equation (8), LORi–j represents the final number of counts, including PE and ICS events along the LOR 
connecting the interacting crystals i and j. Di–j, Di–k and Dj–k represent the number of coincidences that underwent 
PE along the interaction positions i–j, i–k and j–k. Ti–j–k is the number of coincidences that underwent ICS at 
positions i, j and k.

2.3.  Experimental study
2.3.1.  Detector and experimental setup
Experimental studies were conducted to demonstrate the feasibility of the proposed methods. The one-to-one 
coupling and light-sharing detectors were constructed using Philips dSiPMs coupled with 3  ×  3  ×  20 mm3 
LGSO (Lu1.9Gd0.1SiO5:Ce; Hitachi Chemical, Tokyo, Japan) crystal arrays. As mentioned earlier, the dSiPM 
consists of 8  ×  8 pixels. For the one-to-one coupling design, 64 LGSO crystals were individually coupled to 64 
dSiPM pixels. For the light-sharing design, a 10  ×  10 LGSO crystal array with a pitch size of 3.1 mm was coupled 
to 64 dSiPM pixels. All the components were optically coupled using optical grease (BC-630, OKEN, Japan). Each 
crystal was wrapped with enhanced specular reflectors (ESR; 3M, St Paul, MN, USA) except for the face that was 
optically coupled to the dSiPM. The 8  ×  8 detector responses were recorded individually using a PDPC technical 
evaluation kit (PDPC-TEK User Manual 2014). Post-processing was applied to demonstrate the RC sum signal 
multiplexing. The configurations of the dSiPM were set to trigger level four, validation level eight, an integration 
length of 165 ns, full neighbor logic and a 40 ns coincidence window (Lee and Lee 2015, Lee et al 2017).

2.3.2.  Intrinsic spatial resolution measurement
An intrinsic spatial resolution measurement was conducted using a detector pair separated by a distance of 13 cm 
and a 22Na point source located at the center, as shown in figure 2(b). By moving the point source in the axial 
direction with a step size of 0.5 mm from the center to the edge of the detector pair, a coincidence measurement 
was conducted. The counts of the opposite crystal pair for both the one-to-one and light-sharing detectors were 
acquired at thirty sequential source positions and represented as a count profile. The count profiles of four crystals 
were acquired with an energy window of 350–650 keV. The experimental set up was placed inside a temperature 
control box (CT-BDI150; Coretech Inc., Korea) which was set to 15 °C.

The three ICS identification methods described in section 2.1.1 were applied to the experimental data for event 
classification and identification. The acquired events were classified into PE and ICS events based on the classifica-
tion criteria, and the interaction positions and deposited energies were identified using the three identification 
methods. The identified ICS events were recovered in the first interaction position using the proportional method. 
Gaussian fitting was applied to the ICS event to recover the count profiles of four opposing crystal pairs, and the 
FWHM (full width at half maximum) and FWTM (full width at tenth maximum) of each profile were calculated. 
Intrinsic resolutions averaged over four crystal positions were reported using the FWHM and FWTM values.

3.  Results

3.1.  Simulation results
3.1.1.  One-to-one coupling design
Figure 4(a) shows an example of ICS identification using the convex optimization method. In the case where a 
single ICS event occurs once in the detector, 8  ×  8 sensor pixel values (y) were observed and represented by their 

Table 1.  Specifications of the simulated detector configurations.

Crystal-to-sensor coupling ratio Crystal size (mm3) Crystal array size

1:1 3  ×  3  ×  20 8  ×  8

1.25:1 3  ×  3  ×  20 10  ×  10

1.5:1 2.5  ×  2.5  ×  20 12  ×  12

Phys. Med. Biol. 63 (2018) 115015 (13pp)
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normalized values, as in figure 4(a). From the observations, we can expect two peaks might be the ICS interaction 
positions. Based on the proposed method, the deposited energy ratio vector x at the 8  ×  8 crystal positions was 
acquired, and the two peak positions in x were determined to be the ICS interaction positions. By comparing the 
identified ICS event positions with the true first interaction position (marked with the red ‘×’ symbol), the ICS 
interaction positions were successfully identified using the proposed method.

The identification rate (equation (7)) and energy linearity, were investigated for the one-to-one coupling 
design based on the simulation study. Three different readout methods were tested, and three different identifi-
cation methods were applied, as shown in table 2. With the individual signal readout (1:1 signal multiplexing), 
the three identification methods showed the highest identification rates. Among them, the proposed pseudoin-
verse and convex optimization methods showed better identification rates compared to the typical maximum 
peak detection approach for identifying ICS events. When we consider ICS event occurred once or twice in the 
detector, higher identification rates were observed that nearly reached one. Since almost 98% of the ICS events 
occur once or twice in a detector, ICS events occurring more than twice are ignored in this study. In the RC sum 
signal readout from 8  ×  8 detector signals, we lose the light distribution information accuracy, and the identifi-
cation rate degrades in all cases. However, the convex optimization method still shows a reasonably good identifi-

cation rate of 0.72. In the case of four corner signal multiplexing, ICS events cannot be identified.
The estimated deposited energies of ICS events were fit to the true energies as shown in figure 5. The indi-

vidual readout case showed good linearity and correlations with the true energy for the three identification 
methods (figures 5(a)–(c)). After RC sum signal multiplexing, the linearity and correlation degraded in the 
maximum peak detection and pseudoinverse methods (figures 5(d) and (e)). However, the convex optim
ization method still showed a consistent linear relationship (figure 5(f)). The four corner multiplexing case 
was not applicable.

3.1.2.  Light-sharing design
Figure 4(b) shows another example of ICS identification using the convex optimization method when a single 
ICS event occurs in the light-sharing detector. In this case, we cannot easily identify where ICS events take 
positions based on the 8  ×  8 detector observations (y). By using the proposed method, the energy ratio vector x 
was acquired and the two peak positions in x were determined to be ICS interaction positions. By comparing the 
identified ICS positions with the true first interaction position, we observed that the ICS interaction positions 
were successfully identified in the light-sharing detector.

Table 3 shows the performance of ICS event identification for two light-sharing detectors with different crys-
tal-to-sensor coupling ratios. The two proposed identification methods were applied, since the maximum peak 
detection method was not applicable in the light-sharing design. For the light-sharing detector with a 1.25:1 crys-
tal-to-sensor coupling ratio and without signal multiplexing, we achieved a good ICS identification rate of 0.94 
with the convex optimization method. The identification rate degraded with the RC sum signal readout. For the 
light-sharing detector with a higher crystal-to-sensor coupling ratio of 1.5:1, the ICS identification rate further 
degraded compared to the lower coupling ratio. Still, with the individual signal readout, we achieved a reasonably 
good ICS identification rate of 0.83 with the convex optimization method. For both light-sharing detectors, the 
pseudoinverse method did not show a good identification performance.

Figure 4.  Examples of ICS event identification using the convex optimization method applied to (a) the one-to-one coupling 
detector and (b) the light-sharing detector. The blue square represents 8  ×  8 photo sensor pixels, and the observations (y) of a single 
ICS event are shown in the normalized values. The yellow square represents the crystal array coupled to the photo sensor, and the 
energy ratio values of each crystal (x) are shown. The red ‘×’ symbol indicates the true first interaction position.

Phys. Med. Biol. 63 (2018) 115015 (13pp)
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The energy estimation performance of the light-sharing detectors is shown in figure 6. For all cases, the 
pseudoinverse method shows poor energy linearity and correlation (figures 6(a), (c), (e) and (g)). On the other 
hand, the convex optimization method shows consistent energy linearity and high correlation (figures 6(b) and 
(d)), even though there were slight degradations with the higher crystal-to-sensor coupling ratio (figures 6(f) 
and (h)).

Table 2.  The ICS identification performance of the simulated one-to-one coupling detector.

Signal readout scheme Identification method

ICS identification 

rate (ICS #  =  1)

ICS identification 

rate (ICS #  ⩽  2)

Individual Max peak detection 0.86 0.93

Pseudoinverse 0.93 0.98

Convex optimization 0.93 0.98

RC sum Max peak detection 0.60 0.61

Pseudoinverse 0.65 0.70

Convex optimization 0.72 0.81

Four corner Max peak detection Not applicable Not applicable

Pseudoinverse 0.02 0.03

Convex optimization 0.02 0.03

Figure 5.  The energy estimation performances of the one-to-one coupling detector with an individual signal readout where ICS 
events were identified by (a) max peak detection, (b) pseudoinverse and (c) convex optimization. The one-to-one coupling detector 
with an RC sum signal readout, where the ICS events are identified by (d) max peak detection, (e) pseudoinverse and (f) convex 
optimization.

Table 3.  The ICS identification performance of the simulated light-sharing detectors.

Crystal-to-sensor 

coupling ratio Signal readout scheme Identification method

ICS identification 

rate (ICS #  =  1)

ICS identification 

rate (ICS #  ⩾  1)

1.25:1 Individual Pseudoinverse 0.67 0.80

Convex optimization 0.87 0.94

RC sum Pseudoinverse 0.53 0.62

Convex optimization 0.65 0.73

1.5:1 Individual Pseudoinverse 0.56 0.67

Convex optimization 0.76 0.83

RC sum Pseudoinverse 0.48 0.57

Convex optimization 0.56 0.64

Phys. Med. Biol. 63 (2018) 115015 (13pp)
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3.1.3.  ICS event recovery
ICS recovery schemes were implemented on the simulation data and compared to the true first interaction 
values. Figure 7 shows the count profile with and without ICS recovery for (a) one-to-one and (b) light-sharing 
detectors. For both detector designs, the count profiles were sharpened after ICS recovery by recovering mis-
positioned LORs into the true LORs. The proportional method shows better recovery performance compared 
to the maximum energy deposition method, regardless of the ICS identification methods. However, the existing 
ICS recovery techniques could not fully recover the true interaction positions of the events, as shown in figure 7. 
Based on the simulation study, we decided to use the proportional method to recover the ICS events in this study.

3.2.  Experimental results
3.2.1.  One-to-one coupling design
As an experimental evaluation, the intrinsic spatial resolution was measured for a detector pair. The events were 
classified and identified using three ICS classification methods and the first interaction position was recovered 
using the proportional method. Events with and without ICS recovery are shown in the count profiles, as in 

Figure 6.  The energy estimation performance of the light-sharing detector with a crystal-to-sensor coupling ratio of 1.25:1 with 
the individual and RC sum signal readout. The ICS events identified by (a) and (c) the pseudoinverse and (b) and (d) convex 
optimization, respectively. The energy estimation performance of the light-sharing detector with a crystal-to-sensor coupling ratio 
of 1.5:1 with the individual and RC sum signal readout, where the ICS events are identified by (e) and (g) the pseudoinverse and (f) 
and (h) convex optimization, respectively.

Figure 7.  The count profile of (a) the one-to-one coupling detector and (b) the light-sharing detector without and with ICS 
recovery using maximum energy deposition and proportional methods compared to the true values.

Phys. Med. Biol. 63 (2018) 115015 (13pp)
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figure 8, which were normalized with respect to the maximum count in each crystal position. Both the individual 
and RC sum signal readout schemes were investigated. The intrinsic resolutions were averaged over four crystal 
positions and are reported in table 4.

After recovering the ICS events, the count profiles were sharpened with increased peak values, as shown in 
figure 8. When the events were identified with the proposed methods, we observed nearly a 1.5-fold increase in 
the count profile compared to the case without ICS recovery. The maximum peak detection method showed 
a 1.14-fold increase in the count profile peak values. Moreover, noting the bottom parts of the count profiles, 
the profiles were narrowed after ICS recovery using the proposed ICS event identifications. The average intrin-
sic resolutions in FWHM and FWTM for the one-to-one detector with the individual readout were 1.95 and 
3.56 mm without ICS recovery, respectively. These values improved to 1.72 and 3.14 mm after recovering the ICS 
events identified by the convex optimization method, respectively. By recovering the ICS events, we observed an 
improvement in the intrinsic resolution and came closer to the ideal detector intrinsic resolution of 1.5 mm.

When detector signals were multiplexed with the RC sum scheme, the count profile intensity increase was 
not as remarkable as the case without signal multiplexing (figure 8(b)). However, the proposed methods showed 
an improvement in the intrinsic resolutions. The average intrinsic resolutions in the FWHM and FWTM were 
improved to 1.78 and 3.24 mm, respectively, with ICS identification using the convex optimization method.

3.2.2.  Light-sharing design
The light-sharing detector was also used for experimental evaluation with the same procedure as the one-to-one 
coupling detector. Since the maximum peak detection method was not applicable, the pseudoinverse and convex 
optimization methods were used for ICS event identification. Events with and without ICS recovery are shown in 
figure 9 as normalized count profiles. The intrinsic resolutions were averaged over four crystal positions and are 
reported in table 5.

In the individual signal readout, we observed a 1.44-fold count profile intensity increase after recovering the 
ICS events, which were identified using the convex optimization method, as shown in figure 9(a). The average 
intrinsic resolutions in the FWHM and FWTM for the light-sharing detector with 1:1 signal multiplexing are 
2.25 and 4.10 mm without ICS recovery, respectively. These values improved to 1.83 and 3.34 mm after recov-

Figure 8.  The intrinsic resolution profiles of four crystals in the one-to-one coupling detector with (a) the individual readout 
scheme and (b) the RC sum readout scheme.

Table 4.  The intrinsic resolutions of the one-to-one coupling detector.

Signal readout scheme Event identification method FWHM (mm) FWTM (mm)

Individual Not applied 1.95 3.56

Max peak detection 1.80 3.29

Pseudoinverse 1.72 3.13

Convex optimization 1.72 3.14

RC sum Not applied 1.95 3.56

Max peak detection 1.82 3.32

Pseudoinverse 1.77 3.22

Convex optimization 1.78 3.24

Phys. Med. Biol. 63 (2018) 115015 (13pp)
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ering the ICS events identified by the convex optimization method, respectively. The ICS recovered intrinsic 
resolution in the light-sharing detector was better than that of the one-to-one coupling detector without ICS 
recovery. The pseudoinverse method did not show a remarkable improvement compared to the convex optim
ization method, and this result matched with the simulation results. The crystal, indicated as a diamond in  
figure 9, was located in the large gap of the dSiPM pixels and showed slight degradation, especially in the pseudoin-
verse method. However, the convex optimization method showed good results regardless of the crystal positions.

When signal multiplexing was applied using the RC sum, the count profile was distorted in case of the pseudo
inverse method. This was mainly due to detector information loss after signal multiplexing. This information 
loss led to the mis-identification of the ICS events, especially for the crystals located in the gap between the pixels. 
However, the convex optimization method showed robust event identification in the light sharing detector with 
signal multiplexing, even though it showed slight degradation. The average intrinsic resolutions in the FWHM 
and FWTM were 2.25 and 4.10 mm without ICS recovery and improved to 1.88 and 3.43 mm after recovering the 
ICS events identified with the convex optimization method, respectively.

4.  Discussion

In this study, we developed a new approach to identify ICS events in a PET detector by considering detector 
observation as a linear problem (y = Ax). The linear problem was modeled based on the observation (y) 
and detector and event characteristics (A and x). We suggested two methods to find a solution to the linear 
problem. The first was to calculate the pseudoinverse matrix and the second was to solve the convex constrained 
optimization problem. Both methods have pros and cons. The pseudoinverse method is simple and fast, but 
it can yield negative entries in the energy ratio vector x, which will lead to a false estimation in identifying the 
interaction positions and energies. The convex optimization method yields a highly accurate energy ratio vector 
x with the given constraints, but it requires quite a long computation time. On the other hand, the proposed 
algorithm has advantages in that it has no dependency on the system or detector geometries.

Based on the simulation study, we investigated the performance of the ICS identification methods. The pro-
posed methods show better performance compared to the conventional maximum peak detection approach 
typically used in one-to-one coupling designs. From these results, we can see that the ICS event positions cannot 

Figure 9.  The intrinsic resolution profiles of four crystals in the light-sharing detector with (a) the individual readout scheme and 
(b) the RC sum readout scheme.

Table 5.  The intrinsic resolutions of the light-sharing detector.

Signal readout scheme Event identification method FWHM (mm) FWTM (mm)

Individual Not applied 2.25 4.10

Pseudoinverse 2.06 3.75

Convex optimization 1.83 3.34

RC sum Not applied 2.25 4.10

Pseudoinverse 2.12 3.86

Convex optimization 1.88 3.43

Phys. Med. Biol. 63 (2018) 115015 (13pp)
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be discriminated correctly by locating the maximum peak positions in the integrated detector responses. Signal 
multiplexing leads to imprecise detector response information, and the ICS identification performance degrades  
significantly while using the maximum peak and pseudoinverse method. However, the proposed convex optim
ization method showed a reasonably good ICS identification rate and consistent energy linearity, even after sig-
nal multiplexing.

The proposed convex optimization method is also applicable to light-sharing detectors. We achieved an ICS 
identification rate of 0.94 with the light-sharing detector consisting of a 10  ×  10 crystal array coupled to 8  ×  8 
pixels. The energy linearity of the convex optimization method was consistent with the light-sharing designs. 
The slope of the fitted energy curve was not 1, but it can be post-calibrated based on the simulation data. The pro-
posed identification method is applicable to the light-sharing detector, even after signal multiplexing. Identifying 
the ICS events was challenging, with crystal-to-sensor coupling ratios larger than 1.5:1.

As an experimental study, we performed intrinsic spatial resolution measurements for the one-to-one and 
light-sharing detectors. After recovering ICS events into the first interaction position using the proportional 
method, we experimentally showed that the intrinsic resolution improved after recovering the ICS events. In the 
one-to-one coupling design with the individual signal readout, we observed a 12.3% resolution improvement in 
the FWHM and 12.6% in the FWTM. Moreover, in the light-sharing design with an individual signal readout, we 
observed a 19.1% resolution improvement in the FWHM and 19.3% in the FWTM. The light-sharing detector 
showed a resolution improvement of 17.8% in the FWHM even after signal multiplexing. The intrinsic resolu-
tion of the detector is a factor that determines the spatial resolution of the PET system. Based on these results, we 
expect to achieve a better spatial resolution by identifying the ICS events using the convex optimization method 
and recovering the first interaction positions.

5.  Summary and conclusion

We have proposed a new method to classify and identify ICS events in a PET detector. The proposed method 
successfully identifies ICS events with high accuracy, even in PET detectors with light-sharing designs. The 
identified ICS events were recovered into the first interaction position, and an improved intrinsic resolution was 
observed after ICS recovery. The proposed method can be applied to PET detectors or system designs that consist 
of light-sharing detector design, even with moderate signal multiplexing.
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