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1. Introduction

The x-ray computed tomography (CT) system has been improved via several techniques, such as multi-slice 
detectors, spiral and fast gantry rotation, and fast computing via a graphics processing unit (GPU). Real-time 
reconstruction, a wider Z-coverage, helical scanning, and motion-dependent scanning, such as a cardiac CT, 
can be performed by those techniques. However, the immense amount of acquired data, which requires more 
computing power, is accompanied by a longer scan range and slower operating speed. Because of this limitation, 
which requires the high-throughput of acquired data, most commercial CT systems offer a preview reconstruction 
using small angle views with a thicker slice thickness (low resolution) during actual reconstruction, which is 
running in the background (Frey et al 2009). In this paper, we propose a method to enhance the resolution and 
contrast of CT images with thick slices.

In CT imaging, many technical parameters and components impact the image quality and radiation dose 
(McNitt-Gray 2003). The reconstructed slice thickness of an image relates to not only the Z-axis resolution, but 
also the noise, which is influenced by the x-ray tube current. Enhancing Z-axis resolution by reducing the slice 
thickness results in a tradeoff with increased noise and possibly an increased dose. To compensate for increased 
noise, we may increase the x-ray tube current to return the noise level to being equivalent to the original one 
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Abstract
The objective of this study is to develop a convolutional neural network (CNN) for computed 
tomography (CT) image super-resolution. The network learns an end-to-end mapping between 
low (thick-slice thickness) and high (thin-slice thickness) resolution images using the modified 
U-Net. To verify the proposed method, we train and test the CNN using axially averaged data of 
existing thin-slice CT images as input and their middle slice as the label. Fifty-two CT studies are 
used as the CNN training set, and 13 CT studies are used as the test set. We perform five-fold cross-
validation to confirm the performance consistency. Because all input and output images are used in 
two-dimensional slice format, the total number of slices for training the CNN is 7670. We assess the 
performance of the proposed method with respect to the resolution and contrast, as well as the noise 
properties. The CNN generates output images that are virtually equivalent to the ground truth. The 
most remarkable image-recovery improvement by the CNN is deblurring of boundaries of bone 
structures and air cavities. The CNN output yields an approximately 10% higher peak signal-to-
noise ratio and lower normalized root mean square error than the input (thicker slices). The CNN 
output noise level is lower than the ground truth and equivalent to the iterative image reconstruction 
result. The proposed deep learning method is useful for both super-resolution and de-noising.
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(McNitt-Gray 2003). The proposed approach enhances the CT image resolution similar to that of a thin slice 
without the increased cost in terms of dose and noise level.

Recently, convolutional neural networks (CNNs), a class of deep, feed-forward artificial neural networks, have 
outperformed conventional approaches in many computer vision applications, such as super-resolution (Dong 
et al 2014) and de-noising (Chen et al 2015) with a large dataset and high computing power GPU  (Krizhevsky 
et al 2012). Super-resolution is a software technique of generating a high-resolution image from low-resolution 
images (Park et al 2003). Nowadays, many CNN-based super-resolution approaches have been proposed (Dong 
et al 2016, Kim et al 2016) in the field of computer vision. However, in biomedical image processing, most of those 
approaches have some drawbacks. First, the network needs to run for each patch, and there are lots of redun-
dancy because of overlapping patches. This redundancy leads to slow computation. Second, there is a trade-off 
between localization accuracy and the use of context. More max-pooling layers, which reduce the localization 
accuracy, are required for larger patches. On the other hand, small patches allow the network to see the only little 
context. To address these problems, U-Net (Ronneberger et al 2015) provided an end-to-end mapping architec-
ture  consisting of a contracting path to capture the context and a symmetric expanding path that enables precise 
localization with a large receptive field.

The main purpose of the present study was to investigate whether the CNN is also potentially useful for CT 
image super-resolution. For this purpose, we designed a network that learns an end-to-end mapping between 
low (thick slice) and high (thin slice) resolution images using the modified U-Net shown in figure 1. To verify the 
proposed method, we trained and tested the CNN using axially averaged data of existing thin-slice CT images 
as input (thick slice) and their middle slice as the label (thin slice). Because we used average data as input, we 
expected an enhanced signal-to-noise ratio in the CNN output to be relative to the thin slice. Accordingly, we 
assessed the performance of the proposed method with respect to not only the resolution and contrast, but also 
the noise properties.

2. Materials and methods

2.1. Data set
Brain CT images from 65 clinical positron emission tomography (PET)/CT studies (26 males and 39 females, 
age  =  67.5  ±  9.2 years) with suspected Parkinson’s disease were used. The PET/CT data were acquired using 
a Siemens Biograph mCT 40 scanner (Siemens Healthcare, Knoxville, TN). The retrospective use of the scan 
data and waiver of consent were approved by the Institutional Review Board of our institute. The head of each 
participant was positioned in a head holder attached to the patient bed, and the PET/CT scan followed the 
routine clinical protocol for brain studies. The CT images were reconstructed in a 512  ×  512  ×  (60–80) matrix 
with voxel sizes of 0.59  ×  0.59  ×  3.0 mm using multi slice spiral image reconstruction method named SureView 
by Siemens.

As a training dataset, five slices of a 3 mm slice thickness were averaged into one slice of a 15 mm slice thick-
ness. Among those five slices, the middle slice was taken as the ground truth dataset, which represented the high-
resolution image (figure 1). To generate as many data as possible, the averaged slices were generated using a 
simple moving average method.

A total of 52 patient data were used as the training set for the CNN; the other 13 patient data were employed 
as the test set. We performed five-fold cross-validation to confirm the performance consistency. For the CNN 
training and testing, the low-resolution images (thick slices) were used as the input, and the high-resolution 
images (thin slices) were used as the output, as previously mentioned. All input and output images were used in 
two-dimensional (2D) slice format. The total number of slices for training the CNN was 7670.

2.2. Network architecture
We implemented the proposed super-resolution method based on a deep CNN. The network directly learns an 
end-to-end mapping between thinner- and thicker-slice images (3.0 mm versus 15.0 mm). The proposed network 
architecture consists of a contracting path to capture the context and a symmetric expanding path that enables 
precise localization, as shown in figure 1. Each path is exploited by the five sequential layers. The contracting 
path follows the typical CNN architecture. Each layer of the path consists of repeated two 3  ×  3 convolutions, 
each followed by a rectified linear unit (ReLU) and batch normalization (BN). Additionally, a 2  ×  2 max pooling 
operation with stride 2 is followed for down-sampling. The number of feature maps is doubled in each down-
sampling step, as shown in figure 2. Note that we draw only four feature maps at the first layer to enable the 
simplified drawing, and the actual number of feature maps is 32. The 32 feature maps become 512 as a result of 
the doubling per layer at the contracting path. Furthermore, mini-batches with the size of six images are used to 
achieve a relative speedy convergence (Ge et al 2015).

The expansion path also consists of repeated two 3  ×  3 convolutions, each followed by the ReLU and BN, 
which is the same as in the contracting path (figure 3). However, 2  ×  2 up-convolution is used for up-sampling 
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with stride 2. The 512 feature maps become 32 by reducing by half the number of feature maps in every layer. 
The expansive path is symmetric to the contracting path; thus, the U-shaped architecture is apparent. In this 
up-sampling part, we also have a large number of feature maps, which allow the network to propagate context 
information to higher resolution layers. The last 1  ×  1 convolution layer performs the scaling.

We implemented the networks using the TensorFlow framework (version 1.3.0) (Abadi et al 2016). We 
employed symmetric skip connections (copy and concatenation), as shown in figure 1, between the convolu-
tional and deconvolutional layers, thereby enabling the training to converge fast and attaining a high frequency of 
local features (Mao et al 2016).

Figure 1. CNN architecture with data flow.

Figure 2. Detail of the contraction path.

Phys. Med. Biol. 63 (2018) 145011 (13pp)
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2.3. Data training and loss function
Learning the end-to-end mapping function 𝐹 required the estimation of network variables, which are weight and 
bias (W). An initial weight is random value from a truncated normal distribution. We minimized loss function 
L(v), which is the L2 norm of the difference between reconstructed image F(Yi) from low-resolution image Yi and 
high-resolution label image Xi. Activation function A(x) was ReLU.

L (v) = 1
n

n∑
i=0

‖F (Yi; v)− Xi‖2, v = {W1, W2 . . .Wm}

A (x) =

{
0 for x < 0

x for x � 0

where n is the number of images in a mini-batch and m is the number of layers.
The weight factor (or kernel), W, for each layer was updated using the error back-propagation with Adam 

(adaptive moment estimation) optimizer, which is a stochastic optimization technique (Kingma et al 2014):

∆t+1 = ∆t −
η√

v̂t + ε
m̂t , η =

τ
√

1 − βt
2

1 − βt
1

, m̂t =
mt

1 − βt
1

, v̂t =
vt

1 − βt
2

.

Here, t is iteration number, Δt denotes the updated parameters, such as weight and bias at the tth iteration, and 
τ  represents the learning rate. The first- and second-moment vector mt  and vt are initialized to zero and β1 and 
β2 are respectively 0.9 and 0.999 with epsilon as 10−8. The learning rate for determining to what extent the newly 
acquired information overrides the old information was initially 0.001 and exponentially decayed by half every 
two epochs. The number of epochs was 18. The training time was approximately 60 min/epoch when using one 
GTX 1080 TI GPU and i7-7700K CPU (3.40 GHz).

2.4. Image analysis
For the quantitative evaluation of the CNN output for the training set, 1515–1564 CT slices from 13 patient data 
were used for each five-fold cross-validation study among a total of 65 patient data sets. The image quality metrics, 
peak signal-to-noise ratio (PSNR) and normalized root mean square error (NRMSE) values were calculated.

PSNR = 10 · log10
MAX2

I

(
∑PQ

ij [X (i, j)− Y (i, j)]2)/N

NRMSE =
1

MAXI − MINI

√∑PQ
ij [X (i, j)− Y(i, j)]2

N

where X (i, j) is the reference high-resolution image with the matrix size of P × Q (=N) and Y (i, j) is the output 
from the network. Additionally, MAXI  and MINI  are the maximum and minimum intensities of the reference 
image.

For the comparison, 3D Richardson–Lucy deblurring (3D RL deblurring) algorithm (Al-Ameen et al 2012a, 
2012b) was applied to the input images. The kernel size of the point spread function (PSF) was 3  ×  3  ×  3 pixels 

Figure 3. Detail of the expansion path.
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(1.46  ×  1.46  ×  1.46 mm) and sigma was one, which yielded highest PSRN and lowest NRMSE when we tested 
with the different kernel sizes from 0.5 pixels to 3.0 in the step of 0.5. Those parameters resulted in a better reso-
lution than the input image with an approximately 0.5% lower PSNR; however, the larger kernel size and sigma 
yielded output that was too noisy.

The PSNR and NRMSE values of the original input, RL deblurred input, and network output were compared. 
To assess the noise characteristics of soft tissue, the region-of-interest (ROI)-based standard deviation was com-
pared.

Figure 4. De-blurred CT images obtained with a deep CNN for recovering 3 mm slices from 15 mm ones. Multiple sections from (a) 
input image (15 mm slice), (b) input image focused by applying RL deblurring, (c) CNN output, and (d) ground truth (3 mm slice). 
Odd rows show CT slices obtained at different axial positions; even rows show magnified images from the red boxes on the odd rows.

Phys. Med. Biol. 63 (2018) 145011 (13pp)
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2.5. Additional verification for clinical practice
In clinical practice, it might be more interesting if one can recover a 1 mm slice from a 5 mm slice as the dose 
reduction would be quite significant when replacing a scanning protocol for a 1 mm slice with a 5 mm protocol. 
Thus, we also explored the possibility of applying the proposed super-resolution technique for recovering the 
1 mm, high-resolution CT data from 5 mm slices. The CNN was also trained with 56 patient data set (9302 slices) 
and tested with 14 data set (2338 slices). The CT images were reconstructed in a 512  ×  512  ×  (180–200) matrix 
with voxel sizes of 0.59  ×  0.59  ×  1.0 mm. The additional verification was also performed through the ROI-based 
standard deviation comparison and the five-fold cross-validation as we have done in recovering the 3 mm CT 
data from 15 mm slices.

3. Results

3.1. Recovery from 3 mm slices from 15 mm ones
The CNN generated output images that were virtually equivalent to the ground truth, as observed in figure 4. 
From left to right, the (a) input image (15 mm slice), (b) input image focused by applying RL de-blurring, (c) 
CNN output, and (d) ground truth (3 mm slice) are presented. Three slices with complex anatomical structures 
were selected. Odd rows show CT slices obtained at different axial positions; even rows are magnified images 
from the red boxes on the odd rows. The most remarkable improvement in the image recovery by the CNN is the 
deblurring of boundaries of bone structures and air cavities. The better deblurring performance relative to the 
RL deblurring is distinct on the occipital bone around the cerebellum shown in the 33rd slice and the boundary 
of the maxillary sinus in the 40th slice. The cortical bone of the occipital condyle in the 20th slices and internal 
occipital crest and cerebellar fossa as well as external occipital protuberance shown in the 33th slices are better 
recognized in the ground truth image than input image. The medial/lateral pterygoid plate in the 20th slices, thin 

Table 1. PSNR and NRMSE (average across all axial positions) relative to the ground truth for 13 subjects employed in the test group of the 
third cross-validation.

Test group Patient

Input RL deblurring Proposed method

PSNR NRMSE PSNR NRMSE PSNR NRMSE

#3 1 36.34 0.017 36.52 0.017 40.78 0.010

2 36.32 0.016 36.46 0.016 40.33 0.010

3 36.73 0.016 36.91 0.016 40.82 0.010

4 37.24 0.015 37.43 0.015 41.85 0.009

5 39.35 0.012 39.64 0.011 42.79 0.008

6 38.55 0.013 38.80 0.012 41.73 0.009

7 37.68 0.014 37.96 0.013 41.28 0.009

8 39.13 0.012 39.41 0.012 42.81 0.008

9 37.10 0.015 37.35 0.014 41.07 0.010

10 38.28 0.013 38.55 0.013 41.71 0.009

11 37.43 0.015 37.66 0.014 40.90 0.010

12 37.77 0.014 38.08 0.014 42.47 0.008

13 39.36 0.012 39.67 0.012 43.36 0.008

Mean 37.79 0.014 38.03 0.014 41.68 0.009

SD 1.073 0.002 1.119 0.002 0.935 0.001

Figure 5. Cross-validation result with mean and standard deviation for PSNR and NRMSE in recovering the 3-mm CT data from 
15 mm slices.

Phys. Med. Biol. 63 (2018) 145011 (13pp)
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septal structure of ethmoid sinus and sphenoid sinus are well identified in contrast of air cells in the 33th and 
40th slices. The computation time of proposed CNN operation was only 30 ms per slice.

The quantitative analysis of PSNR and NRMSE confirmed these findings in the visual observations. Table 1 
shows the PSNR and NRMSE (average across all axial positions) relative to the ground truth for 13 subjects 
employed (total 1478 slices) in the test group of the third cross-validation. The CNN output yielded approxi-

mately 10% higher PSNR and lower NRMSE values than the input (thicker slices).
Applying RL deblurring (figure 4(b)) yielded a slightly better PSNR than the input image with enhanced the 

image sharpness. These findings are consistent through all the cross-validations, as summarized in figure 5. In 
all the cross-validations, the CNN yielded a PSNR higher than 40 and an NRMSE smaller than 10%. The noise 
level of the CNN output was lower than the ground truth. Figure 6 shows the ROI-based standard deviation of 
a relatively uniform region of a representative case. On the contrary, the RL deblurring increased the noise level.

Figure 6. Denoising effects of deep learning for recovering 3 mm slices from 15 mm ones. ROI-based standard deviation is 
compared among the (a) input image (15 mm slice), (b) RL deblurring, (c) proposed deep learning method, and (d) ground truth 
(3 mm slice). Each row shows CT slices obtained at two different axial positions.

Table 2. PSNR and NRMSE (average across all axial positions) relative to the ground truth in recovering the 1 mm CT data from 5 mm 
slices.

Test group Patient

Input RL deblurring Proposed method

PSNR NRMSE PSNR NRMSE PSNR NRMSE

#3 1 35.38 0.019 35.50 0.018 39.40 0.012

2 34.83 0.019 34.95 0.019 38.89 0.012

3 38.13 0.014 38.17 0.014 41.33 0.010

4 37.54 0.015 37.72 0.015 40.06 0.011

5 35.96 0.017 36.07 0.017 39.99 0.010

4 35.96 0.017 36.05 0.017 39.36 0.011

7 36.11 0.018 36.27 0.017 40.06 0.011

8 35.53 0.018 35.65 0.018 39.50 0.011

9 36.83 0.017 36.88 0.016 40.32 0.011

10 37.60 0.016 37.68 0.016 41.24 0.010

11 36.21 0.017 36.34 0.017 39.90 0.011

12 35.83 0.018 36.00 0.018 39.60 0.011

12 36.10 0.018 36.27 0.018 39.96 0.011

13 36.36 0.018 36.44 0.017 40.30 0.010

Mean 36.31 0.017 36.43 0.017 39.99 0.011

SD 0.920 0.001 0.905 0.001 0.675 0.001

Phys. Med. Biol. 63 (2018) 145011 (13pp)
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3.2. Recovery from 1 mm slices from 5 mm ones
Figures 7–9 and table 2 shows the outcomes of additional verification for clinical practice in which we explored 
the feasibility of proposed method for recovering the 1 mm, high-resolution CT data from 5 mm slices. These 
results were all consistent with those shown previously in the recovery the 3 mm CT data from 15 mm slices. The 
additional verification also showed consistent performance through all the cross-validations, as summarized in 
figure 8. Figure 9 shows that the denoising effect exists consistently.

Figure 7. De-blurred CT images obtained with a deep CNN for recovering 1 mm slices from 5 mm ones. Multiple sections from (a) 
input image (5 mm slice), (b) input image focused by applying RL deblurring, (c) CNN output, and (d) ground truth (1 mm slice). 
Odd rows show CT slices obtained at different axial positions; even rows show magnified images from the red boxes on the odd rows.

Phys. Med. Biol. 63 (2018) 145011 (13pp)
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4. Discussion

In various biomedical imaging and engineering fields, machine learning has been widely used (Mohammadi 
et al 2016, Choi 2017, Yoo 2017). Recently, deep learning has gained considerable interest and is now actively 
investigated for medical imaging. In some physical artifact-reduction problems in x-ray CT and other medical 
image modalities, deep learning outperformed conventional mathematical and statistical approaches (Hong 
et al 2017, Hwang et al 2018, Kang et al 2018). Furthermore, deep learning has shown significant potential for 
computer-aided diagnosis and fully automatic organ segmentation (Cha et al 2016). In this study, we showed 
the potential of deep-learning-based super-resolution of x-ray CT images. A single image super-resolution 
technology based on CNN was applied to a thick CT slice having a higher SNR than a thin slice on account of the 
higher number of x-ray quanta per voxel. The CNN-generated output was almost indistinguishable from the 
ground truth thin slice both visually and numerically.

In this preliminary study, we did not systematically analyze the impact of super-resolution on lesion detect-
ability because the CT images employed in the study were non-contrast-enhanced low-dose CT for PET attenua-
tion correction and anatomical localization. Further investigations are thus warranted to determine whether this 
proposed approach will also be valid for diagnostic purposes. The feasibility of this approach for other medical 
imaging modalities, such as magnetic resonance imaging and PET, is also of interest. Although we cannot yet 
contend that the proposed method is clinically feasible on account of the above reasons, this method will nev-
ertheless be useful at the minimum for previewing CT image reconstruction. Preview reconstruction (real-time 
reconstruction) employs fewer views owing to limited data throughput while the main reconstruction runs in 
the background. Because of insufficient data as well as the skipping of all post-processing steps, the output image 
of preview reconstruction is noisy and has poor spatial resolution. Therefore, we usually employ a thick slice 
thickness, of which the image resolution and contrast can be improved by the deep learning approach proposed 
herein. Because preview images were not saved in the Siemens mCT scanner used in this study, it was not possible 
to conduct training between the preview and main reconstruction images.

Thick CT slices may, at times, be preferable in reading CT images with a low soft-tissue contrast and high noise 
level. Moreover, under fewer view acquisitions with high-pitch helical scanning, a thick slice reduces the artifacts 
due to insufficient angular sampling and the chance of missing small lesions. The proposed method will be effec-
tive in these cases as well. However, we should note some limitations of the proposed method in these potential 
applications. Most of all, one potential issue of the proposed method is that the resolution recovery is done using 
2D CNN. Due to the lack of the 3D information, a small lesion in any 3 mm slice would appear to be identical in 
the averaged, 15 mm slice. This creates an issue that the averaged information would not vary even if the actual 
location of the small lesion changed within the 15 mm slice. In addition, the CNN based  super-resolution may 
also expect to reproduce small structure (common anatomical features among subjects) which is easily buried 
and invisible in low-resolution images. We, however, could not observe such cases in this study.

The spatial resolution of the CT image is mainly determined by the size of the detector elements, as defined 
by the detector spacing and detector pitch (Greenspan 2008). Although we can improve the spatial resolution 
by reducing the detector width and inter-detector distance, development of new detectors is time-intensive and 
incurs a high cost. In addition, smaller detector elements lead to an increase of noise. The image resolution can 
be improved by image processing methods, such as image sharpening by a high-pass filter (Dogra et al 2014), and 
image deblurring by a Laplacian filter and the Richardson–Lucy algorithm (Al-Ameen et al 2012a, 2012b). How-
ever, these kinds of filters and deblurring methods increase the noise level and are not as effective as the proposed 
deep learning approach, as shown in figures 6 and 9.

Figure 8. Cross-validation result with mean and standard deviation for PSNR and NRMSE in recovering the 1 mm CT data from 
5 mm slices.

Phys. Med. Biol. 63 (2018) 145011 (13pp)
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Figure 9. Denoising effects of deep learning for recovering 1 mm slices from 5 mm ones. ROI-based standard deviation is compared 
among the (a) input image (5 mm slice), (b) RL deblurring, (c) proposed deep learning method, and (d) ground truth (1 mm slice). 
Each row shows CT slices obtained at two different axial positions.

Figure 10. ROI-based standard deviation comparison for 3 mm slices between the (a) siemens healthcare iterative solution 
(SAFIRE), (b) proposed deep learning method, and (c) ground truth.

Phys. Med. Biol. 63 (2018) 145011 (13pp)
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Some recent publications also used CNN-based super-resolution methods for improving mammography, 
angiography, CT, and MR images, etc (Oktay et al 2016, Yang et al 2016, Pham et al 2017a, 2017b, Umehara et al 
2017a, 2017b, Zhang et al 2017). These related publications proposed methods for the recovery of original images 
from the under-sampled smaller-sized images with larger pixel size, and showed that the CNN-based super-
resolution outperformed conventional interpolation method used in medical image magnification. However, 
in this study, we have focused on the image resolution and contrast recovery in the degraded images due to axial 
average required in real-time CT preview reconstruction. Our approach can be regarded as a kind of deconvolu-
tion operation for axial spatial resolution recovery. The results of these others’ and our approaches indicate that 
we can use the CNN-based super-resolution techniques for improving the medical image quality and reducing 
scan time and processing burden in several different ways.

Noise reduction in a CT is most important for reducing the radiation dose and improving the diagnostic 
power. Statistical iterative image reconstruction and model-based image reconstruction are currently used algo-
rithm-based approaches to reducing noise in CT images (Beister et al 2012). However, they require raw projec-
tion data and many computations, which result in a slow image reconstruction speed. To address this issue, an 
image-based nonlinear filter (Keselbrener et al 1992) and sinogram-based nonlinear smoothing (Li et al 2004) 
can also be applied. However, each of these methods produce low resolution and require projection data. In con-
trast, our proposed method applied to reconstructed image is effective in noise reduction without causing image 
blurring. As shown in figures 10 and 11, the proposed method can be also used as a noise-reduction solution. 
Compared to Siemens Healthcare iterative solution, named SAFIRE, our method yielded a similar noise level in 
the ROI-based standard deviation analysis. The streak artifact shown in the ground truth image (red arrow) was 
also reduced.

Some recent studies (i.e. Chen et al (2017) and Wolterink et al (2017)) showed that the CNN-based noise 
reduction is efficient in thin-slice CT images. In these publications, the CNNs learn the transition from the noisy 
image to denoised one or that from the noisy image to the residual between noisy and denoised images. Although 
these approaches look promising for reducing image noise or radiation dose in high-resolution CT scans, a con-
cerns is raised in these direct denoising approaches: It is uncertain what the outcome of CNN will be if the noise 
level of an input image is different from the training set. On the contrary, our approach would be freer from this 
concern because the input to our CNN is axially averaged image with more consistent noise level than single thin-
slice due to the saturated statistical fluctuation.

Figure 11. ROI-based standard deviation comparison for 1 mm slices between the (a) siemens healthcare iterative solution 
(SAFIRE), (b) proposed deep learning method, and (c) ground truth.
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In this paper, we used several strategies to improve the CNN performance compared to the original U-Net. 
Mini-batches were used to accelerate CNN learning, although it requires more GPU memory. Moreover, there 
was a constraint in the number of feature maps and mini-batches because of the memory limitation. We used six 
mini-batches with half of the feature maps—specifically, 32 feature maps, compared to the originally designed 
64 maps without mini-batches. However, using 12 mini-batches with five-fold fewer feature maps (16 of them) 
showed worse convergence and performance. Owing to the concern of overfitting, we once attempted the drop-
out and biased convolutional layers. However, BN (Ioffe et al 2015) was more effective than those strategies 
(dropout and biased convolution layers) for avoiding the local minima caused by improper initialization and 
achieving faster learning rates. We attempted to use batch re-normalization to reduce the dependency in multiple 
mini-batches (Ioffe 2017); however, it could not achieve a significant boost in training speed.

5. Summary and conclusion

In this study, we propose a deep-learning-based approach for CT image super-resolution. The CNN trained in 
this study yielded high-resolution images (thin slice) once the low-resolution image (thick slice) was given. We 
optimized the U-Net architecture and training strategies, including BN, learning rate decay, and feature-map 
and mini-batch size fine-tuning. The extraction and expansion paths of the network with a large receptive field 
effectively captured the high-resolution features as high-resolution features. Although this work mainly focused 
on resolution improvement, the Z-axis averaging plus super-resolution strategy was also useful for reducing 

noise.
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