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Abstract
Accurate spatial normalization (SN) of amyloid positron emission tomography (PET) images for Alz-

heimer’s disease assessment without coregistered anatomical magnetic resonance imaging (MRI) of

the same individual is technically challenging. In this study, we applied deep neural networks to

generate individually adaptive PET templates for robust and accurate SN of amyloid PET without

using matched 3D MR images. Using 681 pairs of simultaneously acquired 11C-PIB PET and T1-

weighted 3D MRI scans of AD, MCI, and cognitively normal subjects, we trained and tested two

deep neural networks [convolutional auto-encoder (CAE) and generative adversarial network

(GAN)] that produce adaptive best PET templates. More specifically, the networks were trained

using 685,100 pieces of augmented data generated by rotating 527 randomly selected datasets

and validated using 154 datasets. The input to the supervised neural networks was the 3D PET

volume in native space and the label was the spatially normalized 3D PET image using the transfor-

mation parameters obtained from MRI-based SN. The proposed deep learning approach

significantly enhanced the quantitative accuracy of MRI-less amyloid PET assessment by reducing

the SN error observed when an average amyloid PET template is used. Given an input image, the

trained deep neural networks rapidly provide individually adaptive 3D PET templates without any

discontinuity between the slices (in 0.02 s). As the proposed method does not require 3D MRI for

the SN of PET images, it has great potential for use in routine analysis of amyloid PET images in

clinical practice and research.
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1 | INTRODUCTION

Spatial normalization (SN; or anatomical standardization) is an essential

procedure in objective assessment and statistical comparison of brain

positron emission tomography (PET) and single photon emission

computed tomography (SPECT) images (Ashburner & Friston, 1999;

Lancaster et al., 1995; Minoshima, Koeppe, Frey, & Kuhl, 1994). In SN,

linear affine transformation and nonlinear deformation of the brain

image of each individual are performed to enable the brain to have the

same shape and orientation in the standard anatomical space (e.g.,

Talairach and MNI spaces; Brett, Christoff, Cusack, & Lancaster, 2001;

Evans, Janke, Collins, & Baillet, 2012). Then, the regional activity con-

centrations in predefined volumes of interest in the standard anatomi-

cal space are calculated to facilitate region-based data analysis with

highly reliable counting statistics (Kang et al., 2001; Lee et al., 2000).

Alternatively, the spatially normalized brain images enable voxel-wise

statistical comparison between different groups (Lee et al., 2005,

2006). Comparison of individual patient data to the distribution of the
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normal cohort can help nuclear medicine physicians and radiologists to

more reliably interpret brain images (Kang et al., 2001; Minoshima,

Koeppe, Frey, & Kuhl, 1995).

Accurate SN of amyloid PET images for Alzheimer’s disease (AD)

assessment without coregistered anatomical magnetic resonance imag-

ing (MRI) of the same individual is technically challenging. The distinct

difference in the uptake pattern of amyloid PET imaging tracers

between amyloid positive and negative groups is a significant benefit in

visual interpretation of the images (Barthel et al., 2011; Klein et al.,

2009; Klunk et al., 2004). However, SN of brain images is predominantly

dependent on the similarities of voxel intensity between the individual

image and a standard template (Ashburner & Friston, 1999; Avants

et al., 2011). This underlying principle of SN inevitably results in consid-

erable error in the SN process when only the amyloid PET is used.

Therefore, performing SN of coregistered three-dimensional (3D) MRI

with PET onto the MRI template and applying the same transformation

parameters to the PET image is the current standard in amyloid PET

image analysis. However, this process requires an additional coregistra-

tion procedure of amyloid PET and 3D MRI that is not always available.

Recently, deep learning is garnering significant attention in the medi-

cal image analysis field owing to its remarkable success in natural image

processing areas such as classification, segmentation, and denoising (Cire-

san, Giusti, Gambardella, & Schmidhuber, 2012; Dey, Chaudhuri, & Mun-

shi, 2018; Krizhevsky, Sutskever, & Hinton 2012; Long, Shelhamer, &

Darrell, 2015; Mansour, 2018; Simonyan & Zisserman, 2014; Xie, Xu, &

Chen, 2012). Deep learning not only solves complex and high-dimensional

problems successfully through an artificial neural networks but also exhib-

its excellent performance in various areas. The main advantage of deep

learning is flexible architecture that allows the trial of various designs tai-

lored to a given problem. Noteworthy initial studies on deep learning-

based PET and SPECT image analysis include multimodal image-based

diagnosis of AD, pseudo CT generation for PET/MRI attenuation correc-

tion, and simultaneous reconstruction of activity and attenuation images

(Hwang et al., in press; Leynes et al. 2018; Suk, Lee, & Shen, 2014).

In this article, we propose deep learning-based self-generation of

PET templates for amyloid PET SN using supervised deep neural net-

works. In the proposed approach, two deep neural networks are trained

to produce the best individually adaptive PET template. The input to the

supervised neural networks is the PET in native space and the label (or

the target of training) is the spatially normalized PET image using the

transformation parameters obtained from MRI-based SN. This approach

enables rapid amyloid PET quantification without MR images and has

the potential of unlimited extension to other types of radiotracers.

The optimized design of the deep learning networks for the specific

aim of this study and evaluation of their performance relative to the

standard MRI-based SN method are outlined in the ensuing sections.

2 | MATERIALS AND METHODS

2.1 | Datasets

Six hundred and eighty-one pairs of 11C-Pittsburgh Compound B (PIB)-

PET and T1-weighted 3D MRI scans obtained in the Korean Brain

Aging Study for Early Diagnosis and Prediction of AD (KBASE) were

used to train and test the deep learning networks. The data were

obtained from 92 scans for AD, 154 for mild cognitive impairment

(MCI), and 435 for cognitively normal (CN). All the studies were

approved by the Institutional Review Board of our institute, and all

study participants signed an informed consent form. The PET/MRI data

were simultaneously acquired using a Siemens Biograph mMR scanner

(Siemens Healthcare, Knoxville, TN) 40 min after intravenous injection

of 11C-PIB (555 MBq on average). The PET scan duration was 30 min.

For attenuation correction of PET, MR images were acquired simulta-

neously with PET using a dual-echo UTE sequence (TE50.07 and 2.46

ms, TR511.9 ms, flip angle5108). The UTE images were recon-

structed into a 192 3 192 3 192 matrix with an isotropic voxel size of

1.33 mm (An et al., 2016). A T1-weighted 3D ultrafast gradient echo

sequence was also acquired in a 208 3 256 3 256 matrix with voxel

sizes of 1.0 3 0.98 3 0.98 mm. The PET images were reconstructed

using the ordered subset expectation maximization algorithm (sub-

set521, iteration56) into a 344 3 344 3 127 matrix with voxel size

1.04 3 1.04 3 2.03 mm. A 6-mm Gaussian post-filter was applied to

the reconstructed PET images.

Of the 681 datasets, 527 were used to train the neural networks

(72 for AD, 117 for MCI and 338 for CN) and the other 154 (20 for

AD, 37 for MCI and 97 for CN) to validate the trained networks. To

generate the average template, we randomly selected 50 patients from

each of the AD, MCI, and CN groups and averaged those 150 subjects’

PET images spatially normalized using MRI.

2.2 | Spatial normalization

Figure 1 shows the SN methods compared in this study. For SN of the

brain images the Statistical Parametric Mapping 12 (SPM12; University

of College London, UK) software was used. Unified image registration

and partitioning algorithm (Ashburner & Friston, 2005) was used for

the nonlinear SN of individual images to the templates (91 3 109 3 91

matrix with isotropic pixel size of 2 mm). First, each T1 MR image was

registered to the MNI152 T1 MRI template and the same registration

parameters were applied to the simultaneously acquired 11C-PIB PET

image (MRI-based SN; We used SPM8 for this procedure because

SPM12 does not provide a function for writing out the spatially nor-

malized image). The PET images spatially normalized in this manner

with the help of MRI were regarded as not only the label for neural

network training but also ground truth for the evaluation of DL-based

SN approach. Next, an individually adaptive PET template was gener-

ated using the deep neural networks, and a PET image of each individ-

ual was registered to the adaptive template (DL-based SN). Finally, for

comparison, MRI-based spatially normalized PET images of previously

mentioned randomly selected 150 subjects were averaged to create an

average PET template, and individual PET images were registered to

the average template (average template-based SN). The images were

then smoothed using a 6-mm Gaussian filter after the SN procedures.

We also used SPM8 for the PET-only SNs (DL-based and average

template-based SNs) because SPM12 does not include the template-

based SN function.
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2.3 | Network architecture

We tested two different deep learning architectures (Figure 2): convo-

lutional auto-encoder (CAE) and generative adversarial networks

(GAN).

2.3.1 | Convolutional auto-encoder

The detail structure of the CAE is shown in Figure 2a. All convolutional

layers extracted the features in a 3D manner. We used strided convolu-

tion rather than max-pooling (Radford, Metz, & Chintala, 2015), and

applied the exponential linear unit (ELU) activation function (Clevert,

Unterthiner, & Hochreiter, 2015) after the convolution. Batch normal-

izations were applied except for the final output layer. The input to

each block (convolution1ELU1batch normalization) was summed

with the output of the block, as suggested by He, Zhang, Ren, and Sun

(2015). The input to the CAE was the PET image (344 3 344 3 127)

of each individual in native space. The following loss function was mini-

mized while measuring the difference between the output of CAE (91

3 109 3 91) and the MRI-based SN result to enable CAE to produce

the individually adaptive PET template for the SN:

FIGURE 1 Schematic diagrams of the amyloid PET SN methods compared in this study

FIGURE 2 Deep neural network architectures used to generate individually adaptive template for 3D amyloid PET images. (a) CAE, which was
also used as the generator in the GAN. (b) Convolutional neural network used as the discriminator in the GAN. (c) Structure of GAN. Each red
orange box represents a 3D strided convolutional kernel, where s is the size of the stride and k is the size of the kernels. Each blue box
represents batch normalization combined with activation function such as leaky-ReLU or ELU. The green box shows the fully connected layer
with the number of units. The purple box represents the 3D transposed convolutional layer (deconvolution) with two stride and kernel size three.
The generator has the architecture of the residual box, as shown in the figure [Color figure can be viewed at wileyonlinelibrary.com]
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where m is batch size, IMNI
i is the image in MNI space (MRI-based SN)

(label), INative
i is the PET image in native space (input), and N is the

number of voxels in MNI space.

2.3.2 | Modified GAN

The objective of GAN is to produce an image that is similar to the origi-

nal data distribution. A GAN consists of two networks: generator and

discriminator (Goodfellow et al., 2014). The generator, G(�), makes

authentic-looking images and the discriminator, D(�), determines

whether the given images are “real” or “fake.” After training both net-

works, the generator produces authentic-looking images and the dis-

criminator cannot determine whether the generated images are real or

fake. The networks are trained by solving the following min-max

problem:

min
uG

max
uD

Ex�pdata xð Þ logD xð Þ½ �1Ez�pG zð Þ 12logD G zð Þð Þ½ � (2)

where z is the PET image in native space (input), x is the MRI-based

SN result (label), and uG and uD are the parameters in the generator

and discriminator, respectively. E stands for the expectation for given

probability distribution.

In the original GAN proposed for generation of unsupervised natu-

ral looking images, z is a random vector. However, individual PET

images in native space are used as input z to the generator in this

study. The above equation is solved by alternating the updating of the

generator and discriminator. In addition, the fidelity loss between the

generated image and the MRI-based SN result (the label) is added to

the GAN min-max problem to lead the trained generator to produce

the template like images as follows:

min
uG

max
uD

Ex�pdata xð Þ logD xð Þ½ �1Ez�pG zð Þ 12logD G zð Þð Þ½ �11025LfidGAN (3)

where

LfidGAN5
Xm

i51

IMNI
i 2G zið Þ� �2

P
all voxels I

MNI
i

The guidelines presented by Radford, Metz, and Chintala (2015)

were applied to constitute the discriminator. The leaky-ReLU and

strided convolutional layers were used for the discriminator, as shown

in Figure 2b.

2.4 | Data augmentation and network training

Before the training, PET images were cropped into a 256 3 256 3

106 matrix and down-sampled to 133 3 133 3 104 to reduce the

input data size and to yield the same pixel size as the MNI152 tem-

plate. The input images and the label data generated by MRI-based

SN were rescaled to [–1, 1]. The training set was augmented by

rotating the images in 3D orthogonal planes with different

FIGURE 3 11C-PIB PET templates generated using deep neural networks for an amyloid negative case. (a) CAE-generated template. (b)
GAN-generated template. (c) Average template. (d) Spatially normalized image using MRI, which serves as the label for CAE and GAN train-
ing [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 11C-PIB PET templates generated using deep neural networks for an amyloid positive case. (a) CAE-generated template. (b)
GAN-generated template. (c) Average template. (d) Spatially normalized image using MRI, which serves as the label for CAE and GAN train-
ing [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Results of SN of a representative 11C-PIB PET image onto (a) CAE-generated, (b) GAN-generated, and (c) average PET tem-
plates. (d) Spatially normalized image using MRI [Color figure can be viewed at wileyonlinelibrary.com]
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orientations each iteration. The rotation angles around the three

axes were randomly selected from [–88, 88]. Accordingly, the total

pieces of data in the training set was 527 (subject) 3 1300 (epoch)-

5685,100.

The number of epochs, batch size, and initial learning rate were

1300, 5, and 0.007, respectively. The learning rate decayed by a fac-

tor of 0.1 every 420 epochs. The loss function was minimized using

the adaptive moment estimation method with b1 5 0.5 (Kingma &

Ba, 2014). Gaussian noise of 0.2 standard deviation was added to

the inputs for discriminator to stabilize the training of the GAN

(Sønderby, Caballero, Theis, Shi, & Husz�ar, 2016). Our implementa-

tion is based on TensorFlow, NVIDIA GeForce 1080 GPU, and Intel

i7–7700K CPU.

2.5 | Image analysis

To compare the different SN methods, MRI-based, DL-based, and aver-

age template-based ones, we calculated the regional activity concentra-

tion of 11C-PIB (kBq/mL) in eight brain regions (frontal, temporal,

parietal, occipital, cingulate cortex, striatum, thalamus, and cerebellum)

in each hemisphere using the Automated Anatomical Labeling atlas.

The standardized uptake value ratio (SUVr) was also obtained by nor-

malizing the activity concentration of each region to that of the cere-

bellum. The correlation between PET- and MRI-based SN was assessed

using Pearson’s correlation on the regional activity concentration and

SUVr. We also performed Bland-Altman analysis on the regional activ-

ity concentration and SUVr.

In addition, SUVr images were smoothed with a Gaussian filter at 8-

mm full width at half maximum for voxel-wise comparisons. Voxel-wise

analysis of SUVr images was then performed by one-way analysis of

variance (ANOVA) among the different SN methods. Additionally, SUVr

images were compared among CN, MCI, and AD groups for each SN

approach to assess how each SN approach can detect differential uptake

patterns according to clinical status. Thresholds of p< .05 corrected for

a family wise error and k>100 contiguous voxels were applied.

3 | RESULTS

The loss functions of CAE and modified GAN maintained a steady

curve after �45,000 iterations (total number of iterations590,000).

The time taken to train the networks was �30 and 48 hr for CAE and

GAN, respectively. After the training, both the CAE and modified GAN

FIGURE 6 The mutual information and mean squared error
between the spatially normalized PET images with and without the
help of MRI

FIGURE 7 Scattered and Bland-Altman plots between regional activity concentration estimated from the results of MRI-based SN and dif-
ferent PET-based approaches using (a) CAE-generated, (b) GAN-generated, and (c) average 11C-PIB PET templates
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The standardized uptake value ratio (SUVr) was also obtained by nor-

malizing the activity concentration of each region to that of the cere-

bellum. The correlation between PET- and MRI-based SN was assessed

using Pearson’s correlation on the regional activity concentration and

SUVr. We also performed Bland-Altman analysis on the regional activ-

ity concentration and SUVr.

In addition, SUVr images were smoothed with a Gaussian filter at 8-

mm full width at half maximum for voxel-wise comparisons. Voxel-wise

analysis of SUVr images was then performed by one-way analysis of

variance (ANOVA) among the different SN methods. Additionally, SUVr

images were compared among CN, MCI, and AD groups for each SN

approach to assess how each SN approach can detect differential uptake

patterns according to clinical status. Thresholds of p< .05 corrected for

a family wise error and k>100 contiguous voxels were applied.

3 | RESULTS

The loss functions of CAE and modified GAN maintained a steady

curve after �45,000 iterations (total number of iterations590,000).

The time taken to train the networks was �30 and 48 hr for CAE and

GAN, respectively. After the training, both the CAE and modified GAN

FIGURE 6 The mutual information and mean squared error
between the spatially normalized PET images with and without the
help of MRI

FIGURE 7 Scattered and Bland-Altman plots between regional activity concentration estimated from the results of MRI-based SN and dif-
ferent PET-based approaches using (a) CAE-generated, (b) GAN-generated, and (c) average 11C-PIB PET templates
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successfully generated adaptive amyloid PET templates as shown in

Figures 3 and 4. In both amyloid negative (Figure 3) and positive (Figure

4) test dataset, the DL-generated PET templates (a and b) were quite

different from the average PET template (c) but similar to the MRI-

based SN result (d), as intended (in training). No discontinuity of brain

and other structures was observed in any of the three orthogonal

planes because our deep learning networks processed the 3D volume.

Figure 5 shows the spatially normalized PET images for the CAE-

and GAN-generated PET templates (a and b) and the average PET

template (c). The images spatially normalized using the DL-based

FIGURE 8 Scattered and Bland-Altman plots between SUVr estimated from the results of MRI-based SN and different PET-based
approaches using (a) CAE-generated, (b) GAN-generated, and (c) average 11C-PIB PET templates

FIGURE 9 Voxel-wise comparisons of SUVr images spatially normalized with the help of MRI and PET-based approaches using (a) average
11C-PIB PET template, (b) CAE-generated PET template, and (c) GAN-generated PET template. Red indicates regions with overestimated
SUVr using the PET-based approach, and blue with underestimated SUVr, compared with the approach with the help of MRI [Color figure
can be viewed at wileyonlinelibrary.com]
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approaches show an amyloid uptake pattern that is very similar to the

MRI-based SN result shown in Figure 5d. However, the average PET

template led to a different uptake pattern, as indicated in Figure 5c by

the white arrows and circle.

The superiority of the deep learning approach is more remarkable in

the quantitative analysis. The Figure 6 shows the mutual information

and mean squared error between the spatially normalized PET images

with and without the help of MRI. Figure 7 shows the scattered plot

with regression line and Bland-Altman plot between the regional activity

concentration obtained from the spatially normalized PET images with

and without the help of MRI. The regional activity concentration (kBq/

mL) of 11C-PIB, obtained from the spatially normalized image onto the

average PET template, were underestimated relative to those from the

MRI-based SN result (Figure 7c). In contrast, both the CAE and GAN

yield unbiased results with better correlation, as shown in Figure 7a,b.

The superiority of the deep learning approach is more remarkable in the

same analysis on the regional SUVr estimation (Figure 8).

The Figure 9 shows the results of voxel-wise comparisons of SUVr

images spatially normalized with the help of MRI and PET-based

approaches using (a) average 11C-PIB PET template, (b) CAE-generated

PET template, and (c) GAN-generated PET template. Mainly in the

boundaries among gray matter and white matter and cerebral fluid

space, the average PET template yielded significant SUVr difference

that was reduced by use of CAE- and GAN-generated templates. In

addition, the deep learning approaches were as sensitive as the MRI-

based SN in group comparison of SUVr. However, the average PET

template approach led to the sensitivity decrease (Figure 10).

The time spent generating a template image using the trained

deep learning networks was �0.02 s.

4 | DISCUSSION

Although deep learning is showing great potential in the medical imag-

ing field, applying natural image processing deep learning algorithms

FIGURE 10 Glass brain images of regions with increased SUVr in MCI and AD groups using (a) MRI-based SN template, (b) average 11C-
PIB template, (c) CAE-generated PET template, and (d) GAN-generated PET template
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successfully to medical images is not straightforward. Natural images

and medical images have different characteristics in many aspects. For

example, the pixel intensity of PET images has more quantitative infor-

mation (i.e., kBq/mL) than that of natural images. Usually, a much

smaller quantity of data is available for training the networks in medical

imaging than in natural imaging. Further, the ground truth of labeled

data for supervised learning is unknown or suboptimal in many medical

imaging problems such as the SN of brain images. Most natural image

processing techniques are applied to 2D images, whereas 3D or higher

dimensional data have to be handled in medical image processing and

analysis. In SN of brain images, the brain deformations are processed

using 3D fields.

In this study, we trained deep neural networks to produce an indi-

vidually adaptive PET template when an amyloid PET image is given to

the networks as input. The training network was supervised using the

MRI-based SN result as the label of the networks. The output of the

trained network was ultimately used as the template for SN of amyloid

PET without use of matched 3D MRI. The DL-based PET templates

resulted in significantly better correlation and bias properties than the

average templates, as shown in Figures 7 and 8, when the MRI-based

SN results were regarded as ground truth.

A potential problem with CAE is blurred output images that results

in loss of the anatomical detail of brain structures. An approach that

has gained significant popularity for preserving the structural detail in

output image is U-net. In U-net, the front layers in the contraction

pathway are combined with the back layers in the expansion pathway.

However, the U-net structure is not appropriate in our SN problem

because U-net requires same dimension and shape for both the input

and output. Alternatively, we tested GAN with the additional fidelity

loss function presented in Equation 3. In our preliminary studies, the

GAN without the fidelity loss function could not produce relevant out-

put images similar to the input or label data. In addition, the anatomical

details shown in the CAE- and GAN-generated templates were not sig-

nificantly different, although the noise level was lower in the CAE-

generated one (Figures 3 and 4). These results imply that the measure-

ment of fidelity loss is important in this specific task for generating indi-

vidualized amyloid PET templates based on deep learning.

Recently, Choi and Lee (in press) proposed a GAN-based approach

for virtual MRI generation from the 18F-florbetapir PET for the same

purpose as this study. They performed the SN of GAN-generated MRI

onto the MRI template and applied the obtained SN parameter to the

input PET image. This method also outperformed the conventional SN

strategies without use of MRI. However, the generation of individual-

ized PET templates in standard coordinates as suggested in the present

study would be more relevant in many other applications because the

current approach does not require transmodal transition of images

(from PET to MRI). Deep learning-based trans-modal transition is gain-

ing increased attention (i.e., virtual CT from MR images; Han, 2017;

Nie, Cao, Gao, Wang, & Shen, 2016). In these applications, the deep

learning networks can generate output images that look similar to the

label. However, if there is no physically or physiologically relevant

underlying principles that can explain the transition mechanism

completely or partially, such trans-modal transitions can lead to unex-

pected errors.

5 | CONCLUSIONS

In this study, we developed a deep neural networks-based approach

for generating adaptive PET templates for robust and accurate MRI-

less SN of 11C-PIB PET. The proposed deep learning approach signifi-

cantly enhances the quantitative accuracy of MRI-less amyloid PET

assessment by reducing the SN error observed when an average amy-

loid PET template was used. The trained deep neural networks provide

adaptive 3D PET templates without any discontinuity between the sli-

ces very quickly (0.02 s) once the input image is given. Because the

proposed method does not require 3D MR images for the SN of PET

images, it has great potential for use in routine analysis of amyloid PET

images for clinical practice and research.
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