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Abstract

Tumor hypoxia and aerobic glycolysis are well-known resis-
tance factors for anticancer therapies. Here, we demonstrate that
tumor-associated macrophages (TAM) enhance tumor hypoxia
and aerobic glycolysis in mice subcutaneous tumors and in
patients with non–small cell lung cancer (NSCLC). We found
a strong correlation between CD68 TAM immunostaining and
PET 18

fluoro-deoxyglucose (FDG) uptake in 98matched tumors
of patients with NSCLC. We also observed a significant correla-
tionbetweenCD68andglycolytic gene signatures in513patients
with NSCLC from The Cancer Genome Atlas database. TAM
secreted TNFa to promote tumor cell glycolysis, whereas
increased AMP-activated protein kinase and peroxisome prolif-
erator-activated receptor gamma coactivator 1-alpha in TAM
facilitated tumor hypoxia. Depletion of TAM by clodronate was

sufficient to abrogate aerobic glycolysis and tumor hypoxia,
thereby improving tumor response to anticancer therapies. TAM
depletion led to a significant increase in programmed death-
ligand 1 (PD-L1) expression in aerobic cancer cells as well as
T-cell infiltration in tumors, resulting in antitumor efficacy by
PD-L1 antibodies, which were otherwise completely ineffective.
These data suggest that TAM can significantly alter tumormetab-
olism, further complicating tumor response to anticancer ther-
apies, including immunotherapy.

Significance: These findings show that tumor-associated
macrophages can significantly modulate tumor metabolism,
hindering the efficacy of anticancer therapies, including anti-
PD-L1 immunotherapy.

Introduction
Tumor hypoxia and glycolysis have long been recognized as

major resistance factors contributing to failures of chemo- and
radiotherapy (1, 2). Traditionally, tumor hypoxia is known to
occur by two mechanisms: chronic or acute hypoxia (2). Chronic
hypoxia occurs as a result of rapid proliferation of cancer cells and
hence being constantly forced away from blood vessels beyond
the oxygen diffusion distance of approximately 150 mm(2). Acute
hypoxia on the other hand occurs by a temporary cessation of the
blood flow due to highly disorganized tumor vasculature (2).
Regardless of themechanism, tumor hypoxia has been extensively
documented for their contribution to resistance to all anticancer
therapies including chemotherapy (2), surgery (3), radiothera-
py (2), and recently immunotherapy (4).

Aerobic glycolysis, also known as Warburg effect, is a phenom-
enon wherebymany types of tumors exhibit a preference of glucose
over theoxygen for their energy substrate (5), and thishasallowedus
to track solid tumors in patients with PET using 18

fluoro-deoxyglu-
cose (FDG) radioactive tracer (6). Although several mechanisms for
Warburg effect have been suggested including mitochondrial
defects, adaptation to hypoxia [hence activation of hypoxia-induc-
ible factor (HIF)], and oncogenic signals such asMYC and RAS (7),
the exact mechanism is still controversial. Tumor glycolysis has also
been reported to influence the therapy outcome (8). Preclinical
studies have suggested that glycolysis can increase DNA repair
enzyme expressions including Rad51 andKu70, which can facilitate
radiation-induced DNA double-strand break repair (9). Lactate, a
major byproduct of glycolysis, has recently been shown to be
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utilized as a fuel source for oxidative phosphorylation in nearby
cancer cells (10),which canpromote the tumor recurrence following
anticancer therapies.

Tumor-associated macrophages (TAM) are bone marrow–
derived immune cells recruited to tumors and have been exten-
sively reported for their protumoral role (11). Recruited to tumors
by various tumor-secreting factors including stromal cell–derived
factor-1 (SDF1; ref. 12), VEGF (13), semaphorin 3A (14), and
colony-stimulating growth factor-1 (CSF1; ref. 15), TAMs have
been shown to produce various growth factors and proteases
necessary for tumor survival (11) or immunosuppressive cyto-
kines inhibiting antitumor immune responses (16).Macrophages
in general are known to be polarized to either classically activated
M1 macrophages or alternatively activated M2 phenotype
depending on the cytokinemilieu in which they are exposed (17).
Bacterial-derived products such as lipopolysaccharide have been
shown to polarize macrophages toward M1 phenotype (17),
while parasite-associated signals such as IL4 and IL13 can lead
to M2-polarized macrophages with increased tissue repair abili-
ties (17). It has been suggested that TAMs are M2-like, although
various subpopulations of TAM have been also identified includ-
ing TIE2-positive macrophages (18), programmed cell death
protein-1 (PD-1)–expressing TAM (19), and C-C chemokine
receptor type-2 (CCR2)–expressing TAM (20).

In this study, we demonstrate clinically and preclinically
that TAMs are a novel contributor to tumor hypoxia and
aerobic glycolysis by competing oxygen and glucose with
cancer cells. We further observed that TAM can significantly
interfere with T-cell infiltration thereby masking programmed
death-ligand 1 (PD-L1) expression in the tumors. We believe
that our results have an important clinical implication such
that patients with high infiltration of TAM in their tumors
may poorly respond to all anticancer therapies, including the
latest immunotherapy.

Materials and Methods
CD68 immunostaining and PET index analysis in patients with
non–small cell lung cancer

Immunohistochemistry for TAM was performed in 98 patients
with non–small cell lung cancer (NSCLC) biopsy samples col-
lected at Seoul National University Hospital (SNUH) by using
CD68 antibodies (PG-M1; DakoCytomation) with Bond-Max
autostainer. The slides were scanned by virtual microscopy
(Aperio Technologies). For enumeration of immune cells, ten
different fields per tumor were captured from virtual microscopic
images (an area of 1 mm2). The average number of CD68þ TAM
per unit area (mm2) was then counted manually. Median values
of the numbers in CD68-positive TAM were used as a cutoff to
divide CD68low versus CD68Hi tumors. This study followed the
WorldMedical AssociationDeclaration ofHelsinki recommenda-
tions andwas approvedby the Institutional ReviewBoard (IRB) of
SNUH (IRB No. 1404-100-572). Informed consent for participa-
tion in the study was waived by the IRB of SNUHon the basis that
this study was a retrospective study using archived material and
did not pose increased risk to the patients.

The Cancer Genome Atlas analysis
Genomic analyses were performed to examine the correlation

between CD68 (CD68), TNFa (TNF), HIF1a (HIF1A), and
glycolysis-related molecules, including glucose transporter 1

[GLUT1 (solute carrier family 2 member, SLC2A1)] and hexokinase
2 [HK2 (HK2)]. The level 3 data of The Cancer Genome Atlas
(TCGA), whichwere downloaded from theUCSCCancer Browser
(https://genome-cancer.ucsc.edu) on June 3, 2015, were used for
analysis. We used mRNA expression data of the Lung Adenocar-
cinoma dataset, which included 513 tumor samples. mRNA
expression data generated using the Illumina HiSeq V2 platform
were presented as reads per kilobase per million and transformed
into log 2 values for analysis. All statistical analyses were per-
formed using SPSS software (version 21; IBM Corp.), and images
were created by the GraphPad Prism 5 software. For TCGA data,
the statistical significance of two continuous variables, such as
mRNA level of CD68 (CD68), TNFa (TNF), HIF1a (HIF1A),
GLUT1 (SLC2A1), and HK2 (HK2), was calculated by Pearson
and Spearman correlation analysis. Two-sided P values <0.05
were considered statistically significant.

Mice and in vivo experiments
Four- to six-week-old C57BL/6 or BALB/c-nude female mice

(OrientBio Inc.) were maintained in germ-free environment and
had access to food and water ad libitum. All animal procedures
were approved by Institutional Animal Care and Use Committee
at POSTECH. Lewis lung carcinoma (LLC; provided by
Dr. J. Martin Brown, Stanford University, Stanford, CA) cells were
routinely maintained (up to 20 passages) in DMEM (Welgene)
supplemented with 10% FBS (Omega Scientific, Inc.). Metformin
(Sigma-Aldrich), oligomycin (Sigma-Aldrich), or 2-deoxyglucose
(2-DG; Sigma-Aldrich) was injected to tumor-bearing mice at 25
mg/kg (at every 12 hours), 0.5 mg/kg (at everyday), or 500mg/kg
(at every 48 hours), respectively. Purified anti-mouse CD8a
antibody clone 53-6.7 (BioLegend) was injected intraperitoneally
at 150 mg at 48 hours before tumor harvest. PD-L1 Ab clone
10F.9G2 or control IgG (BioXCell) was injected intraperitoneally
at 100 mg every other day. Clodronate or vehicle liposome
(Encapsula Nano Science) was injected intravenously twice at
24-hour interval, 24 hours prior to the tumor harvest. For com-
bination with metformin, 2-DG, oligomycin, or PD-L1 Ab,
clodronate or vehicle liposome was intravenously injected
every second day. To detect tumor hypoxia, pimonidazole
(Hypoxyprobe-1; HPI Inc.) was intraperitoneally injected at
60 mg/kg at 1 hour prior to the tumor harvest. Hoechst 33342
(Sigma-Aldrich) was administered intravenously at 50 mg/kg at
20 minutes before sacrificing mice.

In vitro experiments
LLC cells expressing 5�HRE-GFPwere generated by transfecting

5 � HRE-GFP plasmid (provided from Dr. J. Martin Brown in
Stanford University) using TransIT-X2 (Mirus) according to the
manufacturer's protocol. After 48 hours, stably transfected cellswere
selected by G418 (A. G. Scientific, Inc.) at 1 mg/mL over 2 weeks.
HRE-GFP expression in stably transfected cells was confirmed by
monitoringGFPsignals fromcells treatedwith400mmol/LofCoCl2
for 24 hours under a fluorescent microscope (EVOS Cell Imaging
Systems; Thermo Fisher Scientific) or by FACS using cells that had
been incubated in ahypoxic chamber (BACTRONAnaerobicCham-
ber; Shel Lab) for up to 48 hours. Bone marrow–derived macro-
phages (BMDM) were prepared as described previously (21).
Murine recombinant proteins TNFa, IFNg , CXCL1, CXCL2, IL1b,
IL6, and IL10 were all purchased from Peprotech and for
glucose uptake experiment they were treated at the following con-
centrations with low glucose-supplemented medium for 24 hours:
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TNFa at 20 ng/mL, IFNg at 80 ng/mL, CXCL1 at 100 ng/mL,
CXCL2 at 100 ng/mL, IL1b at 50 ng/mL, IL6 at 20 ng/mL, or IL10
at 10 ng/mL. BMDMwere treated with AICAR (Tocris) at 1mmol/L
prepared in culture medium supplemented with 1% serum for 2
hours. For Western blot analyses, BMDM were treated with 10
mmol/L metformin in low glucose media for 2 hours. For in vitro
coculture system, lower compartment of a 12-well plate was
seeded with either LLC or BMDM at 4 � 105 cells per well
density. After 12 hours, medium was replaced by low glucose
medium, and a transwell insert (modified Boyden chamber with
0.4 mm pore size; Corning) containing BMDM or LLC at 4 � 105

cells was placed and further incubated for 24 hours. For glucose
add back experiment, glucose was added to the lower compart-
ment of the Boyden chamber, which was originally low glucose
medium (1 g/L; Thermo Fisher Scientific) so that the final
concentration of the glucose after adding back becomes 4.5 g/
L, which was equivalent to commercially available high glucose
medium (Welgene). For LLC; HRE-GFP and BMDM coculture
experiment, BMDM at 5 � 105 cells were seeded directly onto a
6-well plate in 1% serum-supplemented media for 12 hours after
LLC; HRE-GFP at 5 � 105 cells had been plated. After 24-hour
further incubation, cells were harvested and GFP signals from
LLC; HRE-GFP were detected by FACS after negative selection
using CD11b and F4/80 markers to exclude BMDM.

FACS analysis
LLC tumors were harvested when the tumor size reached

approximately 150 mm3, followed by enzyme digestion using
a cocktail consisting of collagenase (Worthington), pronase
(Calbiochem), and DNase I (Sigma-Aldrich). Tumors prepared
in single-cell suspensions were then filtered through 100 mmCell
Strainer (Corning) and further incubated in 1 � BD Pharm Lyse
(BD Biosciences) in PBS for 10 minutes on ice. Cells were
then washed in FACS buffer (Ca2þ-free PBS containing 3% FBS)
and following antibodies were added: PE-Cy7 anti-CD11b
(eBioscience), APC anti-F4/80 (eBioscience), Keratin 4.62
antibody (Sigma-Aldrich), anti-pimonidazole (PAb2627AP;
HPI Inc.), FITC anti-CD45 (BioLegend), PE-Cy7 anti-CD4
(BioLegend), Pacific Blue anti-CD8a (BioLegend), PE-Cy7 anti-
CD8a (BioLegend), APC anti-CD44 (eBioscience), PerCP-Cy5.5
anti-CD62L (BioLegend), PE anti-IFNg (eBioscience), or Pacific
Blue anti-Granzyme B (BioLegend) antibodies. Secondary anti-
bodies were anti-mouse Alexa 488 antibodies (Life Technologies)
or anti-rabbit Alexa 488 (Life Technologies). For aerobic versus
hypoxic tumor cell quantification, HoechstbrightKeratinþ cells
were regarded as aerobic cells, whereas HoechstdimKeratinþ cells
or pimonidazoleþ cells were quantified as hypoxic cells
where appropriate. HoechstbrightKeratinþ aerobic cancer cells
were sorted freshly every time from a different batch of tumor-
bearing animals in order to perform any individual functional/
biochemical assay. For T-cell stimulation to quantify granzyme B
(GzmB) and IFNg , tumor cells made in single-cell suspension
were incubated with eBioscience Cell Stimulation Cocktail con-
taining protein transport inhibitors (Invitrogen) for 4 hours
before antibody staining. For function analysis of mitochondria
in BMDM, 5� 105 cells in prewarmed PBS were stained with 500
nmol/L Mitotracker (Thermo Fisher Scientific) or 200 nmol/L
tetramethylrhodamine, ethyl ester (TMRE; Abcam) for 30 min-
utes. After washing, samples were introduced to MoFlo XPD
(Beckman Coulter) for sorting or LSR Fortessa 5 cell analyzer
(BD Biosciences) for analysis.

Statistical analysis
Statistical comparisons of the data sets were performed by two-

tailed Student t test, one-way ANOVAwith Tukey post test, or two-
way ANOVA with Bonferroni correction using Prism software
(Version 4.00; GraphPad Inc.). Data were considered statistically
significant when P < 0.05.

Additional information is available in Supplementary
Methods.

Results
Clinical correlation between TAM infiltration and glycolysis in
patients with NSCLC

To investigate whether TAMs play a role in tumor glycolysis, we
first examined TAM in 98 biopsy samples taken from patients
with stage I and IINSCLC (48adenocarcinomas and50 squamous
cell carcinomas) whom had also been imaged for FDG PET by
immunostaining for TAM using CD68 antibodies. We observed
that there was a significant correlation between FDG uptake and
TAM counts in tumors (Fig. 1A and B), as measured both by FDG
maximal standardized uptake value (SUVmax; Fig. 1B) and 40%
total lesion glycolysis (Fig. 1B). Reciprocal analyses by categoriz-
ing tumors intoCD68low versus CD68Hi also revealed a significant
difference in FDG SUVmax (Fig. 1C). Further examination into
subgroup analyses revealed that the significance correlation
between FDG uptake and TAM infiltration existed in adenocarci-
nomas but not in squamous cell carcinomas (Fig. 1D), perhaps
due to the distinctly higher glucose uptake and glycolysis in
squamous cell carcinomas, as reported recently (22). By analyzing
TCGA database in 513 patients with adenocarcinoma NSCLC, we
also found a strong correlation between CD68 and glycolysis
signatures, including SLC2A1, also known as GLUT1, (Fig. 1E)
and HK2 (Fig. 1E).

TAMs make tumors more glycolytic
To determine the molecular mechanism, we implanted LLC

subcutaneously in mice and depleted TAM by intravenously
administering clodronate liposome (Clod; Supplementary Fig.
S1A), a liposomal preparation of bisphosphonate causing apo-
ptosis selectively in macrophages (23). We first validated our
clinical findings in a preclinical model by measuring FDG uptake
in LLC tumors by PET (Fig. 2A) and found that Clod significantly
lowered FDG signals (Fig. 2A and B). Moreover, we observed that
ferumoxytol uptake, previously reported as an magnetic reso-
nance (MR) contrast agent for TAM (24), was significantly
reduced by Clod (Fig. 2A) and that this ferumoxytol uptake was
colocalized with CD68-positive areas in tumors by IHC staining
(Supplementary Fig. S1B). We then wished to examine genetic
and functional changes of glycolysis in LLC modulated by TAM.
To do this, we perfused the tumors with Hoechst 33342, a
vascular perfusion dye, and sorted aerobic cells by FACS accord-
ing to the brightness of Hoechst 33342 dye (25) in conjunction
with Keratin-19 antibodies to label cancer cells (Supplementary
Fig. S1C). By performing qRT-PCR, we observed that aerobic
cancer cells (HoechstbrightKeratinþ; Fig. 2C) depleted for TAM
exhibited a significantly decreased gene expression in glycolytic
pathways including Slc2a1 (also known as Glut1), pyruvate dehy-
drogenase kinase-1 (Pdk1), pyruvate dehydrogenase (Pdh), phospho-
glycerate kinase (Pgk), Hk2, glucose-6-phosphate dehydrogenase
(G6pd) as well as those in HIF signaling such as Vegfa, carbonic
anhydrase 9 (Ca-9), and nitric oxide synthase-2 (Nos2; Fig. 2D).
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There was no significant change in DNA repair gene such as
Parp1, whereas C-X-C motif chemokine ligand-12 (Cxcl12), a well-
known HIF1-downstream target gene (26), was significantly
increased in aerobic cancer cells depleted for TAM (Fig. 2D). To
determine whether the gene expression changes would also
reflect functional changes, we measured glucose uptake using
14C-deoxyglucose as well as lactate production in the sorted cells.
We observed that aerobic cancer cells depleted for TAM as above
not only took up less glucose (Fig. 2E) but also produced a
significantly reduced amount of lactate (Fig. 2E) and decreased
GLUT1 protein expression (Fig. 2F). Furthermore, aerobic cancer
cells depleted for TAM exhibited faster oxygen consumption
kinetics (Fig. 2G), although mitochondrial potential (Supple-
mentary Fig. S1D) or the total mitochondrial mass (Supplemen-

tary Fig. S1E) was not changed. These results thus indicate that
depletion of TAM could switch the tumor metabolism from
aerobic glycolysis to oxidative phosphorylation (OXPHOS). To
prove this hypothesis, we sought to inhibit OXPHOS by admin-
isteringmetformin (27) or glycolysis by administering 2-DG (28)
in LLC tumor–bearing mice that had been depleted for TAMwith
Clod. We found that the tumor growth inhibition was the most
significant when depleted for TAM in combination with met-
formin (Fig. 2H) but not with 2-DG (Fig. 2I). Consistent with
this result, we observed that oligomycin, another OXPHOS
inhibitor (29), also resulted in a significant tumor growth
inhibition (Supplementary Fig. S2A). Collectively, these results
together suggest that TAM can significantly alter the tumor
metabolism.
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Figure 1.

Strong correlations between TAM infiltration
and glycolysis in patients with NSCLC.
A, Representative PET/CT images for FDG
uptake (top) and immunostaining of CD68
(bottom) from paired tumors of patients with
NSCLC. Top, yellow circles, location of tumors.
Bottom, red arrowheads, CD68-positive TAM.
Scale bar, 100 mm. B, Correlation between
glycolysis and CD68-positive TAM in 98
patients with NSCLC paired results as in A.
Glycolysis was analyzed as FDGmaximal
standardized uptake value (FDG SUVmax; left)
or 40% total lesion glycolysis (TLG; right).
C, FDG SUVmax values for CD68

low (n¼ 49) or
CD68Hi (n¼ 49) NSCLC tumors. D, Subgroup
analyses of FDG uptake in adenocarcinomas
(n¼ 48; left) or squamous cell carcinomas
(n¼ 50; right) of NSCLC. � , P < 0.05;
��� , P < 0.001 in C and D as determined by
the Student t test. Data are the mean� SEM.
E, TCGA analysis between CD68 and SLC2A1
(left) or HK2 (right) in 513 patients with
adenocarcinoma NSCLC. P values are
indicated in each plot.
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TAMs secrete TNFa to promote tumor glycolysis
We next sought what molecule(s) would be secreted from

TAM to facilitate glycolysis in cancer cells. To do this, we set up
a modified Boyden chamber coculturing LLC cancer cells and
BMDM and examined gene expression changes in LLC cancer
cells. We found that LLC cocultured with BMDM exhibited a
significantly increased gene expression in many glycolytic genes
including Slc2a1, Pdk1, Pgk, Hk2, and lactate dehydrogenase A
(Ldha; Fig. 3A), although Pdh and G6pd did not exhibit such an
increase (Fig. 3A). Moreover, LLC cocultured with BMDM took
up more glucose (Fig. 3B) and produced more lactate (Fig. 3B)
compared with LLC cultured alone, suggesting that this system
well reflects tumors in vivo. Importantly, when we introduced
glucose back to the LLC compartment of the coculture system
with BMDM, glucose uptake to LLC returned to the basal level
of LLC cultured alone (Fig. 3C), indicating that it was indeed
glucose competition between cancer cells and macrophages. To

identify TAM-secreted factor(s), we harvested supernatant from
the coculture systems and exposed them to antibody array or
luminex-based cytokine array. We observed that TNFa was
significantly increased from both antibody array (Fig. 3D;
Supplementary Fig. S2B) and luminex-based cytokine array
(Fig. 3E), although there were several other cytokines including
ILb, CXCL1, CXCL2, IL10, and IL6 whose expression was
upregulated in BMDM cocultured with LLC compared with
BMDM alone (Fig. 3D; Supplementary Fig. S2B and S2C). To
investigate which cytokines facilitate glucose uptake in LLC, we
treated the above cytokines individually to LLC and found that
glucose uptake was significantly increased when the cells were
treated with TNFa (Fig. 3F; Supplementary Fig. S2E and S2F),
but not with IL1b, CXCL1, nor CXCL2, the cytokines observed
to be increased in cytokine array (Fig. 3D; Supplementary
Fig. S2E) or with IL10 nor IL6 from luminex-based cytokine
array (Supplementary Fig. S2C and S2F). Treatment of TNFa to
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TAMsmake tumors more glycolytic. A, Left,
PET/MRI images for FDG uptake in LLC
tumors in mice before (D0, top) and after
(D2, bottom) Veh or Clod treatment. Yellow
circles, tumors. Right, T2-weighted MR
images of LLC tumors treated with Veh or
Clod pre (top)- or post (bottom)- contrast.
Red arrowheads in Veh tumor, ferumoxytol-
labeled TAM. B, FDG uptake SUVmax inA.
�� , P < 0.01, determined by two-way ANOVA.
C, FACS plot indicating HoechstbrightKeratinþ

(red boxes) population of cells sorted as
aerobic cancer cells. D, Fold changes in gene
expression in FACS-sorted aerobic cancer
cells from LLC tumors treated with Clod or
Veh. E, Glucose uptake (left) and lactate
production (right) from the sorted aerobic
cancer cells as in C. Data in D and E are the
mean� SEM from at least triplicate samples.
� , P < 0.05; ��� , P < 0.001 by the Student t
test. F,Western blot of FACS-sorted aerobic
cancer cells in C for GLUT1. b-Actin was
used as the loading control. G,Oxygen
consumption kinetics in FACS-sorted aerobic
cancer cells as described in C.H, LLC tumor
growth in mice treated with Veh, Clod,
Vehþmetformin (VehþMet), or
Clodþmetformin (ClodþMet). �, P < 0.05;
�� , P < 0.01; ��� , P < 0.001, determined by
two-way ANOVA. I, LLC tumor growth in
mice treated with Veh, Clod, Vehþ 2-DG, or
Clodþ 2-DG. Data in H and I are the mean�
SEM, with number of animals indicated in the
graphs.
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Figure 3.

Macrophages secrete TNFa to facilitate glycolysis in cancer cells. A,Gene expression changes in LLC cocultured with (LLCþBMDM) or without (LLC) BMDM. Data
are the mean� SEM from at least triplicate determinations. B, Glucose uptake (left) and lactate production (right) in LLC cocultured with or without BMDM. Data
are the mean� SEM for triplicate samples per group. �� , P < 0.01 by Student t test. C, Glucose uptake in LLC cultured alone, cocultured with BMDM, or cocultured
with BMDMwith glucose added back to the LLC compartment of the coculture system. Data are the mean� SEM for n¼ 4 replicates per group. � , P < 0.05;
�� , P < 0.01 by one-way ANOVA. D,Antibody cytokine arrays in the supernatant obtained from BMDM culture with (BMDMþLLC) or without (BMDM) LLC. Red
boxes indicate those cytokines whose expressions were increased in BMDM cocultured with LLC compared with BMDM alone. Blue box, CXCL1, a cytokine
produced by LLC cancer cells themselves (Supplementary Fig. S2D). E, Luminex cytokine assays for TNFa in the supernatant from culture media, LLC alone,
BMDM alone, or BMDM cocultured with LLC. Data are the mean� SEM for n¼ 3 replicates per group. ��� , P < 0.001 by one-way ANOVA. F, Glucose uptake in
LLC alone (none), LLC cocultured with BMDM (þBMDM), or LLC treated with TNFa (þTNFa) or with IFNg (þIFNg). Data are the mean� SEM from n¼ 3 samples
per group. �� , P < 0.01; ��� , P < 0.001 by one-way ANOVA.G,Western blot for LLC cells treated with increasing concentrations of recombinant TNFa protein for
GLUT1, HK2, or PGC-1a. b-Actin was used as the loading control. H, TNFa concentrations in the supernatant from LLC cultured with (þBMDM) or without
(alone) BMDM, or in BMDM cultured with (þLLC) or without (alone) LLC, measured by ELISA. BD, below the detection limit. �� , P < 0.01 by Student t test. I,
Immunostaining of TNFa (red) and CD68 (green) in LLC tumors grown in mice. Nuclei are shown in blue with DAPI counterstaining. The inset showsmagnified
regions where indicated with the asterisk (�). White arrowheads, CD68-positive TAM-expressing TNFa. Scale bar, 100 mm. J, TNFa concentrations measured by
ELISA in the supernatant from CD11b and F4/80 double-positive TAM sorted by FACS. Data are the mean� SEM from triplicate determinations. ��� , P < 0.001,
determined by one-way ANOVA. K, TCGA analysis of clinical correlations between CD68 and TNF (left) or between TNF and HK2 (right) in 513 patients with
adenocarcinoma NSCLC. P values are indicated in each plot.
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LLC cancer cells increased GLUT1 and HK2 protein expression
(Fig. 3G) while decreasing peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC-1a) expression
(Fig. 3G) in a dose-dependent manner, suggesting that TNFa
can facilitate glycolysis and inhibit mitochondrial biogenesis.
To determine whether TNFa is mainly secreted from macro-
phages, we measured TNFa concentrations from the coculture
system and found that TNFa was detectable in BMDM but not
LLC (Fig. 3H) and more so when BMDM were cocultured with
LLC (Fig. 3H). By examining LLC tumors grown in mice, we
observed that TNFa was indeed expressed in CD68-expressing
TAM (Fig. 3I) and that CD11b- and F4/80-double positive TAM
sorted from these tumors secreted significant amount of TNFa
into the medium (Fig. 3J). To further validate our preclinical
results, we went back to TCGA database and found a strong
correlation between CD68 and TNF (Fig. 3K) and between TNF
and HK2 (Fig. 3K), indicating that TAMs produce TNFa and
that this facilitates glycolysis in tumors.

TAMs exacerbate tumor hypoxia
We then wished to examine whether TAM could compete for

oxygen with cancer cells thereby contributing to tumor hypoxia.
To test our hypothesis, we first examined the distribution of TAM
with respect to hypoxic regions in tumors by performing immu-
nostaining of LLC tumors grown in mice for TAM and hypoxia
using S100A8 antibodies and pimonidazole, respectively. We
observed that numerous TAMs were positive for pimonidazole
(Fig. 4A), indicating that TAM may be hypoxic. Immunopheno-
typing analysis further revealed that CD11b- and F4/80-double
positive TAMs in LLC tumors were positive for pimonidazole
(Fig. 4B).We then sortedCD11b- and F4/80-double positive TAM
and analyzed the gene expression profile and found that TAM
exhibited a significantly increased gene expression in the follow-
ing pathways: hypoxic signaling including Vegfa, Slc2a1, Pdk1,
and C-X-C motif chemokine receptor-4 (Cxcr4); macrophage M1
polarization such as Nos-2 as well as M2 polarization such as
arginase-1 (Arg1); and immunosuppressive cytokines such as Tnf
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Figure 4.

TAMs directly contribute to tumor
hypoxia.A, Immunostaining of LLC
tumors grown in mice for TAM by using
S100A8 (red) and hypoxia by using
pimonidazole (PIMO; green) antibodies.
Nuclei are shown in blue with DAPI
counterstaining. B, FACS analysis
demonstrating that CD11b and F4/80
double-positive TAMs are pimonidazole-
positive. C,Gene expression in CD11b and
F4/80 double-positive TAM isolated from
LLC tumors compared with those in
cultured BMDM. Data are the mean� SEM
from triplicate determinations.D, Two-
photon microscopy images of the dorsal
window chamber whereby 5� HRE-GFP–
expressing LLC tumors had been
implanted. Images were taken at 24 hours
after a single intratumoral injection of
PBS (þPBS) or PBS containing
FACS-sorted TAM (þTAM). Scale
bars in A and D, 100 mm. E, Representative
FACS plots demonstrating
HoechstbrightKeratinþ as aerobic tumor
cells (red boxes) and HoechstdimKeratinþ

as hypoxic tumor cells in LLC tumors
grown in mice treated with Veh or Clod.
F,Quantification of aerobic or hypoxic
tumor cells in E. Data are the mean� SEM
for n¼ 6mice per group. �, P < 0.05 by
Student t test. G, TCGA analysis between
CD68 and HIF1A in 513 patients with
adenocarcinoma NSCLC. P value is
indicated in the graph. H,Growth of LLC
tumor treated with Veh or Clod
immediately prior to a single dose of
20 Gy ionizing irradiation. � , P < 0.05 by
two-way ANOVA.
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and Il10 compared with BMDM (Fig. 4C). Other genes known to
be regulated by HIF including Cxcl12 (26), Il6 (30), Tgfb1 (31),
toll-like receptor 4 (Tlr4; ref. 32), Csf1r (33), or fms related tyrosine
kinase 1 (Flt1; ref. 34) did not exhibit such an increase (Fig. 4C). To
determine whether TAM can directly contribute to the tumor
hypoxia, we sorted TAM by FACS as described above, labeled
them with a cell tracker dye (Supplementary Fig. S3A), and
injected them directly underneath a dorsal window chamber in
nude mice, in which LLCs transfected with 5 times hypoxia-
responsive element (5 � HRE)-GFP (35) were implanted. By
two-photon microscopic imaging, we were able to observe that
TAM injection significantly increased GFP signal in tumors
(Fig. 4D), indicating that TAM can directly contribute to the
tumor hypoxia.

To examine whether TAM depletion can alter the extent of
tumor hypoxia, we administered Clod followed by Hoechst
33342 dye to LLC tumor–bearing mice and analyzed aerobic
(HoechstbrightKeratinþ) or hypoxic (HoechstdimKeratinþ) cancer
cells (Fig. 4E).We found that Clod significantly decreased hypoxic
tumor cell fractions (Fig. 4F), whereas aerobic cells were not
affected (Fig. 4F). We observed similar results when we utilized

pimonidazole in the place of Hoechst 33342 (Supplementary Fig.
S3B). TCGA analyses further revealed that there was a significant
correlation between CD68 and HIF1A in 513 patients with
adenocarcinoma NSCLC (Fig. 4G). Given that tumor hypoxia is a
major resistance factor for radiotherapy (2), we examined whether
the depletion of TAM could sensitize tumors to ionizing radiation.
We found that only transient administration of Clod prior to
ionizing radiationcould result ina smallbut significant sensitization
of LLC tumors to a single highdose of 20Gyof irradiation (Fig. 4H).
These results thus suggest that TAMs exacerbate tumor hypoxia.

AMP-activated protein kinase and PGC-1a activation in TAM
promotes tumor hypoxia

To determine how TAMs contribute to tumor hypoxia, we first
measured the oxygen consumption of BMDM or BMDM mixed
with LLC in 1:5 or 1:10 ratio. We found that BMDM oxygen
consumption rate became significantly slowed if they were mixed
with cancer cells (Fig. 5A). Furthermore, ATP production was
significantly decreased in BMDM if they were mixed with cancer
cells at 1:5 or 1:10 ratio (Fig. 5B), indicating that BMDM com-
peted oxygen with cancer cells. Exposure of cells to hypoxic
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AMPK and PCG-1a activation in TAM
increases tumor hypoxia.A,Oxygen
consumption kinetics in the BMDM
alone (BMDM) or with LLCmixed in 1:5
(BMDMþLLC 1:5) or 1:10 (BMDMþLLC
1:10) ratio. B, ATP production from
BMDM described in A. Data are the
mean� SEM from triplicate
measurements. �� , P < 0.01 by one-way
ANOVA. C,Western blot for phospho-
AMPK (p-AMPK), AMPK, or PGC-1a in
FACS-sorted TAM, BMDM polarized to
M1 or M2, or metformin (Met)-treated
BMDM. D,Western blot of BMDM
treated with or without AICAR. b-Actin
was used as the loading control in C
and D. E and F,Oxygen consumption
rate (OCR; E) and its quantifications as
basal respiration, maximal respiration,
and spare respiratory capacity (F) in
BMDM treated with or without AICAR.
Data are the mean� SEM for n� 10
replicates per group. ��� , P < 0.001,
determined by Student t test.G, FACS
histogram demonstrating
mitochondrial membrane potential in
BMDMwith or without AICAR, as
measured by TMRE. H, FACS
histogram demonstrating GFP signal
intensity in LLC cells expressing 5�
HRE-GFP. These LLC cells were either
cultured alone (LLC; HRE-GFP),
cocultured with BMDM (LLC; HRE-GFP
þ BMDM), or cocultured with
AICAR-treated BMDM (LLC; HRE-GFP
þ BMDMþAICAR).
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conditions may activate AMP-activated protein kinase (AMPK), a
nutrient-sensing signaling pathway (36). To examine whether
AMPK activation would be involved in TAM contributing to the
tumor hypoxia, we sorted TAM from LLC tumor–bearing animals
and examined phospho-AMPK levels by Western blot. We found
that there was a strong expression of phospho-AMPK protein in
TAM but not in M1- or M2-polarized BMDM (Fig. 5C). Further-
more, we observed a strong expression of PGC-1a, a master
regulator for mitochondrial biogenesis activated by AMPK (37)
in TAM(Fig. 5C), suggesting that the activation of AMPK therefore
PGC-1a would lead to an increased mitochondrial biogenesis in
TAMresponsible for the oxygen consumption. To test this hypoth-
esis, we used AICAR, a compound that can activate AMPK and
PGC-1a (38) because metformin, an AMPK activator (39), failed
to increase PGC-1a expression in BMDM (Fig. 5C). We observed
that AICAR resulted in an increased expression of phospho-AMPK
and PGC-1a in BMDM (Fig. 5D) as well as mitochondrial bio-
genesis including the increased oxygen consumption rate

(Fig. 5E), maximal and spare respiration capacity (Fig. 5F), and
mitochondrial membrane potential (Fig. 5G). We found that
AICAR-treated BMDM when cocultured with LLC expressing
5 � HRE-GFP increased GFP signals compared with BMDM
treated with vehicle (Fig. 5H). These results suggest that TAM
may exacerbate tumor hypoxia by activated AMPK signaling.

TAMs dampen PD-L1 expression in tumors and inhibit T-cell
infiltration

Tumor hypoxia and glycolysis have recently reported to inhibit
cytotoxic T-cell functions (40, 41). Upon RNA sequencing anal-
yses with the sorted aerobic cancer cells isolated from LLC treated
with or without Clod, we found that the gene transcripts in
defense response pathway were significantly downregulated in
tumors depleted for TAM(Fig. 6A). To determine howTAMs affect
the defense response, we analyzed tumor-infiltrating T cells in LLC
grown inmice andobserved thatCD4andCD8aT-cell infiltration
was significantly increased in tumors depleted for TAM (Fig. 6B).
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Depletion of TAM increases tumor-infiltrating
T cells and PD-L1 expression in tumors. A,
Gene ontology (GO) biological process from
RNA sequencing analyses in FACS-sorted
aerobic cancer cells isolated from LLC
tumors treated with Clod or Veh. B, FACS
analysis of the number of CD4þ or CD8aþ

tumor-infiltrating T cells in LLC tumors
treated with Veh (n¼ 8) or Clod (n¼ 7).
� , P < 0.05; ��, P < 0.01, by Student t test.
C, FACS analysis for IFNgþ, GzmB, or
CD44þCD62L� cells among CD8aþ T cells in
LLC tumors treated with Veh (n¼ 9) or Clod
(n¼ 9). GzmB is presented by mean
fluorescence intensity (MFI).D,
Representative FACS plots for CD4þ or
CD8aþ T cells (red boxes) in LLC tumors
treated with (þanti-CD8a Ab) or without
(-anti-CD8a Ab) anti-CD8a antibodies (Ab).
Percentages are CD4þ or CD8aþ T cells
among the total CD45þ lymphocytes in
tumors. E, Glucose uptake in the sorted
aerobic cancer cells isolated from LLC
treated with Veh, Clod, or anti-CD8a Ab.
Data are the mean� SEM from at least
triplicate samples per group. F,Western blot
for PD-L1 expression in FACS-sorted aerobic
cancer cells isolated from tumors treated
with Veh or Clod. b-Actin was used as the
loading control. G, LLC tumor growth in mice
treated with Veh, Clod, Vehþ PD-L1 Ab, or
Clodþ PD-L1 Ab. Data are the mean� SEM
with number of animals indicated in the
graphs. � , P < 0.05 by two-way ANOVA.
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Further analyses revealed that Clod treatment did not affect IFNg ,
GzmB, or CD62L expression in CD8a T cells (Fig. 6C), indicating
that TAM may inhibit T-cell infiltration to tumors but not acti-
vation. To examine whether the increased T-cell infiltration may
increase tumor glycolysis similarly as to TAM, we administered
anti–CD8a-neutralizing antibodies to tumor-bearing mice and
examined glucose uptake (Fig. 6D). We found that depletion of
CD8a T cells did not change glucose uptake into aerobic cancer
cells (Fig. 6E). We next examined PD-L1 expression in aerobic
cancer cells isolated from tumors depleted for TAM.We found that
aerobic cancer cells depleted for TAM exhibited a significantly
increased PD-L1 expression (Fig. 6F), and this may be caused by
increased T-cell infiltration to tumors as T-cell–secreted IFNg is
known to induce PD-L1 expression in cancer cells (42). These
results suggest TAM depletion could sensitize tumors to PD-L1
blockade, and we indeed observed that anti–PD-L1 antibodies
were effective in reducing the tumor growth only when combined
with TAM depletion by Clod (Fig. 6G).

Discussion
Clinically, it has been recognized for some time that the

presence of inflammation confounds FDG-positive signals in PET
images of patients with cancer (43). Recently, Lee and collea-
gues (44) have demonstrated that depletion of macrophages by
Clod resulted in a significant reduction of FDG signals in the heart
following acute myocardial infarction in mice, indicating that
macrophages can take up significant amount of glucose, well
supporting our results present in this study. In this study, we
found that TAM can contribute to tumor hypoxia and glycolysis.
Previous studies have demonstrated that TAMs migrate toward
hypoxic areas of tumors, and their motility slows once trapped in
those regions via semaphorin 3A acting as a stop signal (14). In
our study, we found that TAMs were hypoxic themselves (Fig. 4B)
and exhibited a strong expression of phospho-AMPK (Fig. 5C).
AMPK activation in cells has been suggested to skew their cell
metabolism toward oxidative phosphorylation (45), consistent
with our results demonstrating that AMPK activation in BMDM
leads to an increased oxygen consumption ratio and mitochon-
drialmembrane potential (Fig. 5E–G).We also found in our study
that macrophage-secreted TNFa resulted in an increase in glycol-
ysis in cancer cells (Fig. 3F). TNFa can be produced from macro-
phages by activation of TLR4, leading to NF-kB signaling path-
ways (46) and that various danger-associated molecular pattern
molecules, including heat shock proteins, and high-mobility
group box-1 secreted from apoptotic or necrotic tumor cells can
activate TLR4 on macrophages (47).

TAMs are extensively documented for their roles in inhibiting
antitumor cytotoxic T-cell responses for example by secreting
immunosuppressive cytokines such as TGFb (48). Recently, recent
imaging study (49) has elegantly demonstrated that TAMs hijack
PD-1 antibodies that had been initially bound to cytotoxic T cells
hence abrogating its antitumor efficacy. Chang and collea-
gues (40) have further suggested that tumor glycolysis can restrict
T-cell activation necessary for antitumor immune responses. We
have demonstrated that depletion of TAM makes tumors less
hypoxic and glycolytic and that this may have resulted in an
increased T-cell infiltration, leading to an increased PD-L1 expres-
sion in tumors (Fig. 6). The latter has a tremendously important
clinical implication because patients' eligibility criteria PD-L1
blockade therapies are based on PD-L1 expression in their tumor

biopsy samples (50). Our results thus demonstrate that TAM can
modulate tumor metabolism as well as PD-L1 expression in
tumors, compromising the tumor response to various anticancer
therapies, including the latest immunotherapy.

Disclosure of Potential Conflicts of Interest
J.S. Lee is CEO at Brightonix Imaging Inc. I.L. Weissman is co-founder,

director at, and is a consultant/advisory board member for Forty Seven Inc.
No potential conflicts of interest were disclosed by the other authors.

Authors' Contributions
Conception and design: H. Jeong, B.-J. Hong, P. Tessier, M. Pelletier, J.H. Ju,
S. Kim, I.H. Kim, H.J. Kim, J.-W. Park, G.J. Cheon, Y.K. Jeon, G.-O. Ahn
Development ofmethodology:H. Jeong, B.-J. Hong, C.-J. Lee, M.S. Lee, S. Kim,
J.S. Lee, G.J. Cheon
Acquisition of data (provided animals, acquired and managed patients,
provided facilities, etc.): H. Jeong, S. Kim, Y.-E. Kim, S. Bok, J.-M. Oh,
S.-H. Gwak, M.Y. Yoo, M.S. Lee, S.-J. Chung, J. Defrêne, H. Jeon, T.-Y. Roh,
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