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A B S T R A C T

Purpose: We propose a multi-atlas based segmentation method for cardiac PET and SPECT images to deal with
the high variability of tracer uptake characteristics in myocardium. In addition, we verify its performance by
comparing it to the manual segmentation and single-atlas based approach, using dynamic myocardial PET.
Methods: Twelve left coronary artery ligated SD rats underwent ([18F]fluoropentyl) triphenylphosphonium salt
PET/CT scans. Atlas-based segmentation is based on the spatial normalized template with pre-defined region-of-
interest (ROI) for each anatomical or functional structure. To generate multiple left ventricular (LV) atlases, each
LV image was segmented manually and divided into angular segments. The segmentation methods performances
were compared in regional count information using leave-one-out cross-validation. Additionally, the polar-maps
of kinetic parameters were estimated.
Results: In all images, the highest r2 template yielded the lowest root-mean-square error (RMSE) between the
source image and the best-matching templates ranged between 0.91–0.97 and 0.06–0.11, respectively. The
single-atlas and multi-atlas based ROIs yielded remarkably different perfusion distributions: only the multi-atlas
based segmentation showed equivalent high correlation results (r2= 0.92) with the manual segmentation
compared with the single-atlas based (r2= 0.88). The high perfusion value underestimation was remarkable in
single-atlas based segmentation.
Conclusions: The main advantage of the proposed multi-atlas based cardiac segmentation method is that it does
not require any prior information on the tracer distribution to be incorporated into the image segmentation
algorithms. Therefore, the same procedure suggested here is applicable to any other cardiac PET or SPECT
imaging agents without modification.

1. Introduction

Tracer kinetic analysis of dynamic myocardial PET enables the
quantification of absolute myocardial blood flow (MBF) and myocardial
flow reserve (MFR) in human and animals [1–3]. Dedicated cardiac
SPECT systems based on new detector technologies also allow fast dy-
namic studies and absolute quantitation [4–6]. In the analysis of those
myocardial PET and SPECT data, accurate segmentation of left ven-
tricular myocardium is a pivotal step because failure in the myocardial
segmentation leads to the wrong quantification of the MBF and MFR
[7,8].

Multivariate analysis techniques, such as cluster analysis, factor

analysis, independent component analysis, and non-negative matrix
factorization, enable the automatic separation of cardiac components
and extraction of time-activity curves from dynamic myocardial PET
images [9–12]. However, in these approaches, the accuracy of anato-
mical delineation of the boundary between the myocardium and ven-
tricular cavity is limited, because the cardiac components are separated
mainly based on their physiological characteristics. An alternative ap-
proach is the deformable segmentation method, such as active contour
models and graph cuts [13–17]. Such deformable segmentation
methods sometimes fail in the segmentation of myocardium with very
low tracer uptake if no appropriate regularization on the contour shape
is applied. However, such modeling and regularization parameters
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optimized for a specific radiotracer and species sometimes do not work
for other cardiac imaging agents in the same or other species [7,8]. In
addition, the activity distribution outside myocardium (e.g., hepatic
uptake) that should be properly handled in the segmentation depends
on the radiotracers and species. The quantitative gated SPECT (QGS)
contour detection principle is a popular tool for gated myocardial
SPECT [18]. The modified algorithm, by taking into account the better
valve definition of attenuation-corrected high-resolution PET, is also
used for the quantitative dynamic PET studies. However, in some cases,
user intervention (contour adjustment) is still required [19]. In addi-
tion, this approach has mainly been validated only for human data.

In this paper, we propose a multi-atlas based segmentation for
cardiac PET and SPECT images to deal with the large variability of the
tracer uptake characteristics in the myocardium and other surrounding
organs. Atlas-based segmentation is based on the spatial normalization
of source (or input) image onto the template on which the regions-of-
interest (ROI) for each anatomical or functional structure is predefined
(the atlas labels). Fully automatic segmentation and analysis methods
using single or probabilistic atlas-based segmentation are well estab-
lished for brain PET and SPECT images [20–22]. Commercial software
provides the atlas-based segmentation tool for cardiac PET and SPECT
image analysis. However, this cardiac segmentation tool relies on only a
single standard atlas. Because the spatial normalization between the
source image and template is carried out based on the image-based
similarity, the large intensity discrepancy between the source and
template causes an enormous distortion of the source image. For ex-
ample, the defect size in the heart is underestimated on the image
spatially normalized onto the normal template because the shrinkage of
the defect region increases the image similarity. We can overcome this
limitation by selecting the best matching template with the most similar
tracer distribution as the source image among the multiple template
candidates.

In this study, we demonstrate how we have developed the multi-
atlas based segmentation method for the cardiac image analysis and
validated its performance using a fluorine-18 labeled myocardial PET
tracer, ([18F]fluoropentyl)triphenylphosphonium salt ([18F]FPTP), as
fluorine-18 has better signal to noise ratio than Oxygen-15 and
Rubidium-82.

2. Materials and methods

2.1. Data set

The [18F]FPTP PET dataset acquired in our previous study for the
tracer kinetic analysis of this radiotracer was retrospectively used [23],
but all PET images were realigned to the one of the images and ROIs
were also newly drawn on the realigned PET images. All the preclinical
procedures were approved by the Chonnam National University Animal
Research Committee and the Guide for the Care and Use of Laboratory

Animals was followed. Twelve Sprague-Dawley rats underwent left
coronary artery ligation surgery 24 h before the PET scan. A small an-
imal PET/CT scanner (Inveon; Siemens Medical Solutions, Knoxville,
TN) was used to acquire dynamic PET (5× 1 s, 5×5 s, 3×10 s,
4×15 s, 16×30 s, 8×60 s: 18min) and static CT images after the
intravenous injection of 18F-FPTP (average activity= 37MBq). The
PET images were reconstructed into 128×128×159 matrices of
0.78×0.78×0.80-mm voxel size using a filtered back-projection al-
gorithm. A static PET image was generated by summing the dynamic
PET frames.

2.2. Multi-atlas based segmentation

2.2.1. Generation of multiple atlases
The static PET images were cropped to include only the cardiac and

surrounding activities and reoriented along the heart axis to form short-
axis slices using FIRE software [24]. The whole left ventricular myo-
cardium in each short-axis slice (n=13 or 14 depending on the animal)
was segmented manually and further divided into 24 angular segments
(Δθ=15°) as shown in Fig. 1. Accordingly, the total number of myo-
cardial ROIs in each atlas was 312 or 336. The myocardial ROIs were
also merged into 17 segments following the American Heart Association
standards. The LV ROIs needed to obtain the arterial input function
were drawn on the center of the LV cavity through 14 short-axis slices
with the size of 2–10 voxels per slice to avoid the spill-over con-
tamination from the myocardial activity.

2.2.2. Atlas-based segmentation
Fig. 2 shows the schematic diagrams of the single-atlas (a) and

multi-atlas (b) based segmentation methods. In the conventional single-
atlas based segmentation as shown in Fig. 2a, a template was developed
by averaging the static shot-axis images spatially normalized into a
single representative image. In the template formation, we used affine-
only spatial normalization with 12 transformation parameters (trans-
lation, rotation, scaling, and shearing× 3 axes). The ROIs were defined
on the single representative image (template) in the above-mentioned
way. Thereafter, each source image was spatially normalized into the
template using an affine plus a nonlinear transformation. The pre-
defined ROIs were applied to the spatially normalized image to obtain
the regional count information. Time-activity curves were obtained by
applying the same spatial normalization parameters (affine plus non-
linear) and ROIs to each frame data of the dynamic PET. Performing the
inverse transformation of the template and ROIs into the individual
image space is an alternative way to reduce the processing time re-
quired for resampling all the dynamic frames. However, we did not use
this method because of potential interpolation errors that make the
inverse transformation and resampling of small ROIs inappropriate.

The core procedure in the multi-atlas based segmentation, shown in
Fig. 2b, is the similarity measurement between the source image and

Axial Angular ROIs

Fig. 1. An atlas of myocardial segments generated by the manual reorientation and segmentation of left ventricular myocardium in [18F]FPTP PET and the automatic
axial and angular (Δθ=15°) subdivision.
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template. Commonly used similarity measures include the voxel-wise
correlation, root-mean square error (RMSE), and mutual information
between each template and spatially normalized source image into the
template.

There are several different approaches to the multi-atlas based
segmentation depending on how one utilizes this similarity measure to
select or generate the atlas-based ROIs [25–27]. One of these ap-
proaches is the generation of a probabilistic atlas using the similarity
measure as a weight optimizer for each source image.

Another way is the selection of the best matched optimal atlas that
yields the highest similarity measure. In this study, we adopted the
latter approach along with voxel-wise Pearson’s correlation and RMSE
as the similarity measures. The RMSE was calculated after the count
normalization of each image to the average count of highest 30 voxels.
The template with the highest correlation and lowest RMSE was se-
lected as the best-matching template. Regional time-activity curves
were obtained in the same way as in the single-atlas based segmenta-
tion. The Statistical Parametric Mapping (SPM) program (http://fil.ion.
ucl.ac.uk) was used for all the spatial normalization procedures.

2.3. Performance evaluation

The performance of single-atlas and multi-atlas based segmentation
methods were compared using leave-one-out cross-validation. That is,
each one of the 12 PET images was analyzed using the single-atlas
method, composed of the other 11 images (single-atlas based) or the
best-matching atlas, selected from the other 11 images (multi-atlas
based). In the single-atlas based approach, the initial image required for
the atlas (template and ROIs) formation was randomly selected from
the 11 images. In the multi-atlas based approach, the other 11 images,
except for the source image itself and ROIs drawn on each of them,
were used as the multiple atlases. The similarity of the source image
and best-matching image was evaluated with Dice similarity coefficient
using the masked images obtained by applying the threshold of 70% of
maximum counts in each image.

For qualitative and quantitative comparisons, we generated polar
maps of kinetic parameters. These were estimated using compartmental
modeling applied to the dynamic PET images. The parametric images of
kinetic parameters (K1: uptake, k2: clearance, Va: blood volume
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Fig. 2. Schematic diagram of the single-atlas (a) and multi-atlas (b) based segmentation methods.
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fraction) were produced using two-compartment models and the basis
function method as described in [23]. Thereafter, the polar maps of
perfusion, α·K1 (α=1− Va) [28], were developed by applying 1) the
manual ROIs drawn on each image, 2) single-atlas based ROIs, and 3)
multi-atlas based ROIs to the parametric images. The correlation be-
tween the kinetic parameters obtained using the atlas-based methods
and manual ROIs were assessed using Pearson’s correlation.

3. Results

3.1. Template selection

Fig. 3 shows the result of the best-matching template selection in the
multi-atlas based cardiac segmentation for a representative [18F]FPTP
rat PET data (source image) in which the severe perfusion defect is
shown in the anterolateral wall of myocardium. The best-matching
template as shown in Fig. 3c, yielding the highest voxel-wise correla-
tion (r2= 0.97) and lowest RMSE (0.0063) with the spatially normal-
ized image as shown in Fig. 3b, exhibits very similar tracer distribution
with the source image as shown in Fig. 3a in terms of the location and
intensity of the lesion. For comparison, the worst-matching template
with the lowest correlation (r2= 0.63) is shown in Fig. 3d. There was a
remarkable difference between the worst-matching template and the
source image. The results of the voxel-wise comparison between the
source image and the other 11 template candidates are presented in
Fig. 4.

The range of square of correlation coefficient (r2), the RMSE and the
best- and worst-matching templates for each source image are sum-
marized in Table 1. In all the images, the template with highest r2

yielded the lowest RMSE. The r2 and RMSE between the source image
and the best-matching templates ranged 0.91–0.97 and 0.06–0.11, re-
spectively. Each template exhibited different values of r2 and RMSE
from those of the source images as shown in Table 2.

The dice similarity coefficient between the source image and best-
matching image was 0.87 ± 0.03.

The time-activity curves obtained using the manually drawn ROIs
and the atlas-based segmentation with the best-matching template
agreed well with each other as shown in Fig. 5.

3.2. Comparison between Single-atlas and multi-atlas based approaches

Fig. 6 shows the polar maps of myocardial perfusion generated in a
representative case using manually drawn ROIs (a), multi-atlas based
ROIs (b), and single-atlas based ROIs (c). The single-atlas and multi-
atlas based ROIs yielded remarkably different perfusion distributions:
only the multi-atlas based segmentation exhibited equivalent results
with the manual segmentation as shown in Fig. 6.

Fig. 7 shows the linear regression results and Bland-Altman plots for
the multi-atlas based versus manually-drawn ROIs (a) and single-atlas
based versus manual ROIs (b). All the segmental perfusion values
(n=204) obtained from the 12 rats were included in the analysis. The
multi-atlas based segmentation method yielded a higher correlation
with the manual segmentation method (r2= 0.92) than the correlation
obtained by the single-atlas based one with the manual segmentation
method (r2= 0.88). The underestimation of perfusion obtained by ap-
plying the single-atlas based segmentation was remarkable in the ROIs
with high perfusion values.

4. Discussion

The atlas-based segmentation is a robust method that has been
mainly used for brain image analysis in nuclear medicine. The single-
atlas based one is computationally efficient because it requires only the
single execution of spatial normalization [29]. However, the accuracy
of this approach is limited because one cannot perfectly deal with the
change of morphology and tracer distribution in severe pathological
conditions with the single atlas or template. The multi-atlas based
segmentation involves a greater computational burden than the single-
atlas based one; however, the enhanced accuracy in the assessment of
tracer uptake and quantitative parameters, as evidenced in this study,
can justify its use for nuclear medicine image analysis [25–27]. In ad-
dition, cost effective parallel computation tools are widely available
now.

In this study, we suggested the multi-atlas based segmentation for
cardiac PET images and verified its performance by comparing it to the
manual segmentation. The multi-atlas based segmentation out-
performed the conventional single-atlas based one in comparison to
manual segmentation. Although only the cardiac PET images of
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Fig. 3. Best-matching template selection. (a) Source image. (b) Spatially normalized image onto the best-matching template. (c) Best-matching template (r2=0.97).
(d) Worst-matching template (r2=0.63; arrows indicate the unmatched regions between source and template images).
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myocardial infarction model induced by the left coronary artery liga-
tion were employed in this study, the voxel-wise correlation between a
single template and the other spatially normalized images onto the
template was highly variable as shown in Table 2. Consequently, the
single-atlas based segmentation yielded a larger discrepancy relative to
the manual segmentation in the quantification of the perfusion para-
meter as shown in Fig. 7b. On the contrary, the best-matching templates
in the multi-atlas based segmentation exhibited over 0.90 voxel-wise
correlation for all source images. This high correlation between the
template and source images in each individual data analysis led to the
excellent agreement level in the segmental analysis of perfusion para-
meter as shown in Figs. 6 and 7. The close proximity between source
image and best matched template would be useful for minimizing the

error in the registration of soft tissue that is considered extremely dif-
ficult [30,31].

The main advantage of the proposed multi-atlas based cardiac
segmentation method is that it does not require any prior information
on the tracer distribution to be incorporated into the image segmen-
tation algorithms. In this proposed method, no adjustment of any
threshold or regularization parameters is necessary. Therefore, the
same procedure, as shown in Fig. 2b, can be applied to any other
routinely used or investigative cardiac PET or SPECT imaging agents
without modification. In addition, there is no need to provide initial
seed pixel or ROI for contour evolving [16]. However, the accurate
segmentation of myocardium to compose the multiple atlases is a pre-
requisite step demanding manual or semi-automatic delineation of
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Fig. 4. Voxel-wise comparison between a source image (image 11) and the other 11 template candidates (templates 1–10 and 12).

Table 1
The range of square of correlation coefficient (r2) and root-mean-square error
(RMSE) of normalized count for each source image.

Source Image (#) r2 RMSE

1 0.67–0.96 0.06–0.15
2 0.47–0.97 0.06–0.26
3 0.63–0.97 0.06–0.18
4 0.73–0.95 0.07–0.15
5 0.57–0.93 0.05–0.22
6 0.67–0.96 0.07–0.16
7 0.55–0.95 0.06–0.22
8 0.42–0.94 0.09–0.21
9 0.51–0.91 0.11–0.23
10 0.65–0.95 0.07–0.16
11 0.42–0.92 0.10–0.25
12 0.69–0.95 0.08–0.15

Average 0.58–0.95 0.07–0.20

Table 2
The range of square of correlation coefficient (r2) and root-mean-square error
(RMSE) of normalized count for each template.

Template (#) r2 RMSE

1 0.91–0.97 0.06–0.12
2 0.75–0.96 0.08–0.20
3 0.71–0.96 0.06–0.17
4 0.77–0.91 0.07–0.13
5 0.45–0.89 0.06–0.23
6 0.77–0.92 0.07–0.14
7 0.42–0.88 0.05–0.21
8 0.79–0.91 0.10–0.16
9 0.42–0.81 0.12–0.26
10 0.74–0.92 0.07–0.13
11 0.51–0.91 0.11–0.23
12 0.89–0.97 0.06–0.11

Average 0.68–0.92 0.08–0.17

S.J.W. Kim et al. Physica Medica 58 (2019) 32–39

36



endocardial and epicardial boundaries of the left ventricular myo-
cardium. The necessary number of atlases for sufficiently good seg-
mentation results would depend on the variability of image patterns in
normal and pathological conditions. Further investigation is warranted
to determine the required number of atlases for more diverse cases of
cardiovascular diseases. It should be also investigated whether different
reconstruction algorithms (for example, the most recent iterative re-
construction algorithms with resolution modeling in respect to FBP) or
cardiac motion (gated images instead of summed ones) influence the
result of the study. Because the advanced reconstruction algorithms and
cardiac gated images yield better contrast between the myocardium and
blood pool and thinner thickness of myocardium, different re-
construction algorithms or cardiac motion management would lead to
decreased correlation between the template and individual source
image. Although it is likely that same best matched optimal atlas will be
selected by the similarity measure used in this study, the performance
of spatial resolution would be more influenced by the reconstruction
algorithms and cardiac motion management. Whether denoising images
will improve our template-based segmentation is an interesting future
research topic [32]. In addition, segmenting myocardium in PET using
fast-growing deep learning approach that outperforms conventional
signal and image processing algorithms for some applications is of in-
terest [33–37]. Also, the generation of synthetic lesions in PET images

will be a useful method to compare the performance of different ap-
proaches for myocardial segmentation [32,38,39].

5. Conclusions

We developed a multi-atlas based cardiac segmentation method for
a fluorine-18 labeled cardiac PET imaging agent and demonstrated its
feasibility by comparing the quantitative perfusion parameter values
obtained using the proposed method with those obtained by manual
segmentation. The similarity between the template and spatially nor-
malized source image was significantly higher in the multi-atlas based
approach than in the single-atlas based approach.
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