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A B S T R A C T

In positron emission tomography (PET) studies, the voxel-wise calculation of individual rate constants describing
the tracer kinetics is quite challenging because of the nonlinear relationship between the rate constants and PET
data and the high noise level in voxel data. Based on preliminary simulations using a standard two-tissue
compartment model, we can hypothesize that it is possible to reduce errors in the rate constant estimates when
constraining the overestimation of the larger of two exponents in the model equation. We thus propose a novel
approach based on infinity-norm regularization for limiting this exponent. Owing to the non-smooth cost
function of this regularization scheme, which prevents the use of conventional Jacobian-based optimization
methods, we examined a proximal gradient algorithm and the particle swarm optimization (PSO) through a
simulation study. Because it exploits multiple initial values, the PSO method shows much better convergence
than the proximal gradient algorithm, which is susceptible to the initial values. In the implementation of PSO,
the use of a Gamma distribution to govern random movements was shown to improve the convergence rate and
stability compared to a uniform distribution. Consequently, Gamma-based PSO with regularization was shown to
outperform all other methods tested, including the conventional basis function method and
Levenberg–Marquardt algorithm, in terms of its statistical properties.

1. Introduction

Dynamic positron emission tomography (PET) scanning provides
quantitative and accurate information regarding the amount of radio-
tracers moving in a living body with a sufficiently fine temporal re-
solution for visualizing their spatiotemporal distribution. In addition to
visualization, a kinetic analysis of the dynamic PET data based on
compartmental modeling allows us to quantify the rate constants of the
radiotracer exchange between compartments and the physiological
parameters associated with these rate constants [1–9]. Because com-
partment models bring about nonlinear least squares (NLS) problems
[10–12] in estimating the rate constants, investigators have commonly
used iterative algorithms employing Jacobians of the cost function,
such as the Levenberg–Marquardt algorithm (LMA), to solve such

problems. However, one of the main limitations of an iterative NLS
algorithm is that its solution may converge to the sub-optimal local
minima if an improper initial value is selected. Another limitation is
that often there are effectively an infinite number of solutions that yield
nearly the same value of the cost function. Given a high noise level,
these cannot be distinguished mathematically or statistically. In prac-
tice, the parameters are highly correlated, leading to a parameter space
with long shallow valleys in which there is only minor change in the
cost function. Owing to these limitations and the high noise levels in the
dynamic PET voxels, iterative NLS algorithms usually produce noisy
and biased parametric images in a voxel-wise full kinetic analysis. On
the other hand, regularizing cost function provides additional criteria
for selecting the solution and can reduce the noise at the potential ex-
pense of higher bias. Another widely used fitting method for PET
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kinetics is the basis function method (BF) [13–15]. Based on a pre-de-
fined set of basis-function exponents, the BF method estimates the
corresponding coefficients using linear least square method. Then, the
best parameter set is determined by comparing the weighted least
square values of all combinations of exponents and coefficients. The BF
method’s performance depends heavily on the initialization of the ex-
ponents set, especially the set’s size and range.

In a PET kinetic analysis, a two-tissue compartment model with four
kinetic parameters is most commonly used for describing the kinetics of
[18F]fluorodeoxyglucose ([18F]FDG) and various other radiotracers
with reversible uptake or binding [16,17]. In this study, from a careful
preliminary analysis using the aforementioned model, we found that
the estimate of the larger of two exponents in the model equation is
exceptionally more sensitive to noise than that of the smaller exponent,
yielding a positively skewed distribution under highly noisy circum-
stances, as shown in Fig. 1. To mitigate this severe bias problem, this
study adopted an l-infinity (l )-norm ( ) regularization strategy
based on the assumption that errors in the rate constant estimates can
be reduced when constraining the overestimation of the larger ex-
ponent.

Because the introduction of l norm makes the regularized cost
function non-smooth, conventional Jacobian-based algorithms are no
longer relevant to the suggested optimization problem. Therefore, we
examined two representative algorithms that do not require smoothness
of the cost function: a proximal gradient algorithm [18] and particle
swarm optimization (PSO) [19–23].

There have been limited number of studies that applied the PSO to
the PET tracer kinetics and biochemical process analysis [24,25]. The
PSO is an iterative global optimization algorithm based on a random
search of the solution space at each iteration. The previous researches
handled the large search space using this random search and predefined
moving rules. In this study, we also propose the use of Gamma dis-
tribution and partial linearization in the PSO for achieving better
convergence in kinetic parameter estimation. Detailed description will
be provided in Section 2.5.

There also has been studies using the randomness in the Bayesian
framework [26–28]. The posterior distribution was calculated from the
prior information, and kinetic parameters were inferenced from the
posterior. On the other hand, PSO is more heuristic algorithm focusing
on the optimization problem. It facilitates the optimization process by
computing cost function directly and comparing between randomized
candidates rather than finding complex gradient of cost function. Ac-
cordingly, incorporating various regularization, such as infinity norm,
is possible into the original problem.

In the following sections, we describe a novel l -norm regulariza-
tion scheme for the two-tissue compartment model in dynamic PET
studies and the optimization algorithms we examined for the regular-
ization problem. The results of a simulation study conducted to eval-
uate the performance of these approaches are then discussed. We also
describe how we optimized the l -norm regularization.

Fig. 1. Histograms of exponent parameters b1 and b2 in equation (4) estimated using LMA with two different noise levels: α = 0.1 and α = 1.1 (refer to Fig. 2 and
section Simulations for the noise level).
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2. Methods

2.1. PET compartment modeling

In the two-tissue compartment model with four kinetic parameters,
the compartments represent the radiotracer concentration in arterial
plasma (C t( )a ), a free or nonspecifically bound radiotracer (C t( )f ), and a
specifically bound radiotracer (C t( )b ) at time t , respectively. The
radiotracer exchanges between compartments are described using four
rate constants, K1 (ml g−1 min−1), k2, k3, and k4 (min−1), as follows:

= + +dC t
dt

K C t k k C t k C t( ) ( ) ( ) ( ) ( ),f
1 a 2 3 f 4 b (1)

=dC t
dt

k C t k C t( ) ( ) ( ).b
3 f 4 b (2)

The time-activity curve (TAC) in a tissue (C t( )T ) equals the sum-
mation of C t( )f and C t( )b if we pre-correct the blood volume component
in the tissue to simplify the problem:

= +C t C t C t( ) ( ) ( ).T f b (3)

By solving Eqs. (1) and (2), the analytic solution of C t( )T is therefore
derived as
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Our goal with compartmental modeling is to estimate the four rate
constants by fitting Eq. (4) to the noisy measurements of C t( )T obtained
from dynamic PET frames. This is equivalent to finding an optimal
solution ( ) to the following optimization problem regarding

= a b a b[ ]1 1 2 2 , and subsequently retrieving the estimates of the
rate constants from [29], i.e.,

= C Cargmin ( ) WT T
2 (5)

where CT is a vector of the noisy measurement of tissue TAC at PET
frames; C ( )T is the TAC constructed using and Eq. (4); and W

2 is the
weighted sum of squares for a given diagonal matrix of weights W . The
weights usually consider the difference in variance of the measurement
errors; for the weights, we used the frame durations divided by the
decay factor to concern the data statistics (Eq. (24)). Because solution
(4) is nonlinear in b1 and b2, problem (5) is an NLS problem and should
thus be solved using an iterative algorithm such as LMA.

2.2. Partial linearization

For fixed b1 and b2, the analytic solution to C t( )T in (4) can be re-
garded as a linear combination of two curves, =e C C t( )b t

a 11 and
=e C C t( )b t

a 22 . Thus, assuming that b1 and b2 are already known or
estimated, the estimation problem in (5) can be simplified as follows:

C Amin ,WT a
2

(6)

where = =A Ce b b( [ ] )t T
a b 1 2b and = a a[ ]T

a 1 2 . Its weighted
least squares solution can then be obtained as

= = A WA WA Ca a[ ] ( ) .T T T
a 1 2

1
T (7)

Finally, we can obtain by applying iterative algorithms that up-
date = b b[ ]T

b 1 2 using nonlinear estimation methods and subsequently

compute a using (7) for the updated b during every iteration.

2.3. Infinity norm regularization

Although Eq. (5) is a simple NLS curve-fitting problem, it usually
yields biased estimation results from the highly noisy PET TACs. Be-
tween the estimates of the two nonlinear parameters b1 and b2 ( <b b1 2)
in Eq. (4), the larger one (b2) is likely to be more sensitive to noise in
C t( )T than the smaller one. This is because the larger exponent in Eq.
(4) is associated more with the early fast rising part of C t( )T rather than
the late relatively slow clearance part; indeed, we observed a larger
overestimation of b2 at a high noise level, as shown in Fig. 1. The figure
shows the histograms of b1 and b2estimated using the LMA under two
different noise levels of a tissue TAC (Section 2.6 Simulations to see
how the noisy TACs were generated). At a low noise level (α = 0.1), b1
and b2show similar symmetric Gaussian distributions. At a high noise
level (α = 1.1), b1 still shows a Gaussian distribution except for the
peak at around zero. However, the distribution of b2is skewed and has a
long tail toward the positive direction.

Therefore, to alleviate such positive bias of b2, which is observed
only for the larger exponent, we can consider the regularization of the
exponent parameters using a special form of infinity norm, M ,
( =M e e[0 0 ]2 4 ), which selects the element with the absolute maximum
between two exponents by definition. Thus, the cost function can be
modified as follows:

+C C M( ) ,WT T
2

(8)

where is a regularization parameter controlling the influence of
M . Because M is non-differentiable, conventional Jacobian-

based optimization algorithms such as LMA cannot properly handle it.
In Sections 2.4 and 2.5, we describe how we utilized two representative
algorithms for a non-smooth function minimization: proximal gradient
and PSO.

2.4. Optimization algorithm 1: Proximal gradient

The proximal gradient algorithm solves the following unconstrained
optimization problem:

+g hmin ( ) ( )

where g is differentiable and h is closed, convex, and possibly non-
smooth. In our problem, functions g and h are given as

= C Cg ( ) ( ) WT T
2 and = Mh ( ) . (9)

The update equations of the proximal gradient algorithm is as fol-
lows:

= t gprox ( ( ))k
t h

k
k

k( ) ( 1) ( 1)
k (10)

where k is the iteration and tk is the step size at k. The parameters are
updated using the gradient descent for function g, followed by a
proximal mapping for function h. The proximal operator prox is de-
fined using the following minimizer:

= +h u
t

uprox ( ) argmin ( ) 1
2th u 2

2

(11)

where t is a constant. Through a Moreau decomposition [18], we have

= M Mprox prox( ) ( )h h (12)

The dual norm of (h) is given through the indication function
on l1 ball, and the proximal mapping of the indication function is simply
given using a projection to a convex set. Therefore, the final proximal
mapping of our function h is

= M Mt tprox proj( ) ( )th B1 (13)

where proj ( )B1 describes the projection to l1 ball. We used an ac-
celerated and descent proximal gradient algorithm shown in [18].
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The step size, tk , was selected as 10-4.

2.5. Optimization algorithm 2: particle swarm optimization (PSO)

2.5.1. Standard PSO
Standard PSO minimizes the cost function through the random

movement of particles (candidate solutions) (Fig. 2; for further details,
see Appendix A1). After the initial guess of the particle positions, their
velocities (v) and positions (x) in the next iterations are determined
using the following update equations:

+ = + +v v p x p xm w m c m m c m m( 1) ( ) ( ( ) ( )) ( ( ) ( )),i i i i i1 1
L

2 2
G

(19)

+ = + +x x vm m m( 1) ( ) ( 1),i i i (20)

where the constant w is the inertia weight affecting the convergence of
particles within the range [0 1]; 1 and 2 are independent random
numbers uniformly distributed between [0 1] for regulating the ran-
domness of particle movement; and the two constants c1 and c2 are the
acceleration coefficients that control the broadness of particle move-
ment. At each iteration, ith particle’s best position pi

L is also updated if
the ith particle’s new position +x m( 1)i yields a lower cost function ( f )
value than its current best position, i.e.,

+ =
+ +

p
x x p

p
m

m iff m f m
m otherwise

( 1)
( 1), ( ( 1)) ( ( )),

( ), .i
i i i

i

L
L

L
(21)

Among the updated +p m( 1)i
L , the best one with the lowest cost

function is selected as the population’s best position, i.e.,

+ = +p pm f m( 1) argmin ( ( 1)).p i
G L

i
L (22)

If a stopping criterion is satisfied, the PSO algorithm finally returns
pG as an optimal solution to the problem.

2.5.2. Gamma distribution for particle movement
The PSO relies on several control parameters, i.e., w, c1, and c2,

which heavily affect the performance of the PSO and whose selection is
radically heuristic. Therefore, various efforts have been made to

Fig. 2. Movements of particles in PSO by the iterations, which are represented in parametric space. (a) Initial values. (b) 10th iteration. (c) 20th iteration. (d) 40th
iteration.
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achieve a good convergence rate and stability of the algorithm by in-
vestigating a strategy for selecting the control parameters [30–33], or
the use of a non-uniform distribution for 1 and 2 to change the ran-
domness characteristics [34,35].

In this study, we adopted the control parameters optimized in a
previous study on the PSO in a multidimensional complex space. A total
of =N 20 particles, =w 0.7298, =c 1.8251 , and =c 1.2 168 were used
[31] In addition, we employed a Gamma distribution for random
movements of particles to assure the positivity of the estimated para-
meters and long tail of the distribution. The Gamma distribution will
enable a faster search of the minimum position than a uniform dis-
tribution because particles sometimes move farther while preserving
their random movement characteristics (for further details, see Ap-
pendix A2).

By integrating (19) and (20), we can express the position of each
particle at the next iteration +x m( 1)i in terms of only the position
information as follows:

+ = + +

+

x x x x p x

p x

m m w m m c m m

c m m

( 1) ( ) ( ( ) ( 1)) ( ( ) ( ))

( ( ) ( )),
i i i i i i

i

1 1
L

2 2
G (23)

which indicates that the next position of each particle is influenced
by the weighted sum of three different distances from the current po-
sition (x m( )i ) to the previous, local best, and global best positions
(x m( 1)i , p m( )i

L , and p m( ))G , respectively.

2.6. Simulations

To evaluate the performance levels of the algorithms, a total of 1000
realizations of a single TAC containing noise were generated using a
real arterial input function obtained from a [11C]raclopride human PET
study. As the rate constants, 0.17, 0.42, 0.15, and 0.08 were selected for
K k k(mlg min ), ,1

1 1
2 3, and k (min )4

1 , respectively. To explore the ef-
fects of the noise levels, noises with various levels were added to
noiseless TACs using the following noise model [36]:

×N C t e
t

Noise (0, 1) ( )
(second)

,
t

i

T i

(24)

where the value of represents the noise level, which is set at 0.1, 0.3,
0.5, 0.7, 0.9, 1.1, or 1.3; ti and ti are the mid-point and the scan
duration of ith frame in seconds; and is the decay constant of the
radioisotope used. We assumed C-11 in this simulation while other
radioisotopes could be considered, such as F-18 in our real animal data
used for further evaluation (Section 2.7).. In the case of F-18, the si-
mulated noise could be less than the C-11.

Using this set of simulation data, we first examined the non-smooth
function minimization algorithms we described in Sections 2.4 and 2.5
in terms of convergence rate and stability; for the PSO, the new for-
mulation based on Gamma distribution for random particle movements
were evaluated. Then, the statistical properties of the most promising
one, among the algorithms considered, were compared against the most

widely used nonlinear least square algorithm, LMA as well as BF in
terms of the bias and coefficient of variance (CV) (see Appendix A3).
For the sake of fairness during the initial-value selection, we repeated
the LMA for all initial PSO particles, which were randomly selected to
be between 0 and 1.5, and chose the best solution among the results of
repetition. Finally, we explored the effect of choosing the regularization
parameter on the PSO performance. For the BF method, we used 100
candidates logarithmically spaced within [0.001, 0.1] for b1 and [0.1,
10] for b2 to construct the basis functions.

To test whether the proposed methods can achieve the same per-
formance irrespective of the simulation settings, we have conducted
additional simulation study using a mathematical phantom with five
different regions. We assigned different rate constants to each region in
the phantom as summarized in Table 1. The dynamic phantom data was
projected to produce sinograms to we added noise. We then re-
constructed the noisy sinogram using maximum-likelihood ex-
pectation–maximization algorithm with 100 iterations. Then, the rate
constants were estimated pixel-by-pixel, and normalized root mean
squared error (NRMSE) was calculated after smoothing the estimated
and groud truth images using 3-mm Gaussian filters.

2.7. Application to real data

We retrospectively analyzed the dynamic [18F]FDG PET data ob-
tained from two BALB/c nude mice (male, 6 weeks old) in our previous
investigation [37]. All the animal studies were approved by the In-
stitutional Animal Care and Use Committee (IACUC) of Seoul National
University Hospital. Two different tumors cells, MDA-MB-231 (five
million cells) and HepG2 (ten million), were implanted subcutaneously
into the left front thigh of each mouse. The mice were fasted for at least
six hours and 16.6 MBq of [18F]FDG was injected into the tail vein.
Dynamic PET images were obtained for two hours (4 × 3 s, 8 × 6 s,
8 × 30 s, 1 × 300 s, 11 × 600 s) using an animal PET/CT scanner
(eXplore Vista CT; GE Healthcare, Waukesha, USA). Arterial input
function was extracted from the left ventricle by manually drawing
volume of interest (VOI). BF, LMA, Unregularized PSO, and Regularized
PSO ( = 10 2.75) were applied to generate parametric images of in-
dividual kinetic parameters in two-tissue compartment model. Initial
values for LMA estimation and initial mean for PSO analysis were de-
termined by applying VOI-based analysis to the whole tumor regions
(supplementary Fig. 1). To consider the intravascular activity in tu-
mors, we modified each algorithm by introducing the blood volume
fraction, va, so that +v C t v C t(1 ) ( ) ( )a T a a was fitted to the noisy
measurement of [18F]FDG tissue TAC C t( )T using the image-derived
input function for C t( )a [38]. All the estimation algorithms were im-
plemented in the MATLAB 2018b (http://www.mathworks.com) with
the Intel Core I7-7700k processor.

3. Results

3.1. Comparison of non-smooth function minimization algorithms

Fig. 3(a) shows the shape of cost function (8) in the parameter space
for b1 and b2 and trajectories of parameter estimates using proximal
gradient and Gamma-distribution-based PSO algorithms in a single si-
mulation. Noise level ( ) and regularization parameter ( ) were 0.3 and
10−2.75, respectively. The maximum steps of the proposed PSO and
proximal gradient were 120 and 30,000, respectively. The proximal
gradient algorithm was extremely sensitive to the initial value and
inner parameters (e.g., step size). The proximal gradient was unable to
reach the ground truth even with the good initial parameters
([0.1\;0.1\;0.05\;0.05] )T . Although the initial values of the proposed PSO
were randomly selected, it searched for the solution much better than
the proximal operator. This is likely because our problem is highly non-
convex, particularly under highly noisy circumstances.

The proposed PSO with a Gamma distribution for random particle

Table 1
Simulated rate constants for digital phantom.

K1 k2 k3 k4

Region 1 0.16 0.4 0.15 0.08
Region 2 0.08 0.2 0.09 0.1
Region 3 0.08 0.2 0.225 0.09
Region 4 0.4 0.7 0.3 0.2
Region 5 0.52 1.2 0.3 0.05

a1 b1 a2 b2

Region 1 0.0538 0.0557 0.1062 0.5743
Region 2 0.0385 0.0607 0.0415 0.3293
Region 3 0.0505 0.0377 0.0295 0.4773
Region 4 0.1574 0.1310 0.2426 1.0690
Region 5 0.1097 0.0397 0.4103 1.5103
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movement showed a better performance than the standard PSO with a
uniform distribution (Table 2). In addition, the proposed PSO with a
Gamma distribution showed a much faster convergence rate than the
standard PSO with a uniform distribution (Fig. 3(b)): Accordingly, in
the following sub-sections, we present only the results from the
Gamma-distribution-based PSO algorithm.

3.2. Comparison to conventional approach

This sub-section presents the results of a comparative evaluation of
the proposed method with the LMA-based methods. The examples of
simulated TACs for the various noise levels is given in Fig. 4. Fig. 5
shows the bias and CV of the parameter estimation using five different
approaches: BF, LMA, the repetition of LMA (Repeated LMA), and
Gamma-based PSO without and with l -norm regularization (Un-
regularized PSO and Regularized PSO, respectively). Although they
showed similar bias at low noise levels, the difference in bias was
substantial at high noise levels, particularly in the k2 and k3 estima-
tions. BF method yielded better performances than LMA in bias. The
repetition of the LMA algorithm for diverse initial guess of parameters
improved the bias property; however, it still yielded a higher bias than
the Regularized PSO, and required a much higher computing time
owing to the repetition. By combining Gamma-based PSO and l -norm
regularization ( = 10−2.75), the bias was substantially reduced in the
K1, k2, and k3 estimations.

The results of the CV analysis are also shown in Fig. 5, which also
indicates that the Regularized PSO yielded the best performance. The
BF method showed comparable performances with regularized PSO
except for k4. The Repeated LMA substantially improve the CV prop-
erties except for k4. A more detailed analysis of regularization is given
in the section below. The average computation time of BF, LMA, and
PSO for 1000 noisy simulations was 0.1158, 0.0658, and 0.0932 s,

respectively. However, these times could depend significantly on al-
gorithmic settings such as the number of bases, number of iterations,
and number of particles.

3.3. Optimization of regularization parameter

The bias and CV property in parameter estimation at a high noise
level were improved by applying moderate l regularization, as shown
in Fig. 6. Too much regularization (e.g. = 10 1) was shown to yield a
poor performance. The CV for K1, k2, and k3 decreased as the regular-
ization parameter increased. The best performance was obtained
with = 10 2.75 through 10 2.25. However, this optimal regularization
parameter may not be valid for other parameter sets. The optimal
regularization parameter depends on the larger exponent, b2, and it
would be challenging to find the global optimal rule for individual b2.
Our results show that too high or too low regularization parameter
causes poor performance. Based on the expectation that the optimal
range derived from the simulation will work well for a similar b2 by
avoiding extreme cases, we continued to use the range in later experi-
ments.

3.4. Parametric images

Fig. 7 shows the digital phantom used for the simulation. Five cir-
cular regions were realized and ground truth sinogram was

Fig. 3. Cost function evaluations of PSO and proximal gradient: (a) Trajectories of estimates using proximal gradient and Gamma-based PSO with l -norm reg-
ularization and (b) Convergence speed of PSO algorithms.

Table 2
Comparison of the standard PSO with a uniform distribution for random par-
ticle movement, and the proposed PSO with a Gamma distribution (mean and
standard deviation of the residual value of the cost function).

Noise level PSO (Uniform) PSO (Gamma)

0.1 0.165 ± 0.050 0.099 ± 0.015
0.3 0.312 ± 0.500 0.278 ± 0.043
0.5 0.486 ± 0.073 0.458 ± 0.071
0.7 0.675 ± 0.101 0.651 ± 0.103
0.9 0.850 ± 0.131 0.829 ± 0.133
1.1 1.041 ± 0.166 1.021 ± 0.166
1.3 1.218 ± 0.192 1.195 ± 0.191

Fig. 4. Simulated TACs with different noise levels (α).
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contaminated by Poisson noise. The parametric images of each rate
constant (Fig. 8) for the simulation data show that the l regularization
is efficient for reducing bias and variation through wide range of rate
constants. NRMSE values of each region demonstrate that the Reg-
ularized PSO is more accurate than any other compared methods
especially for k3 and k4 (Table 3). Fig. 9 shows the static (left) and
parametric (right) images of [18F]FDG PET studies on BALB/c nude
mice. The parameter values estimated from VOI-based analysis (initial
values for LMA and PSO) are indicated by yellow arrows under the
colorbars. The LMA parametric images show much higher or lower
pixel values relative to the results of VOI analysis. Although the Un-
regularized and Regularized PSO methods yielded visually similar
parametric images, the Unregularized PSO resulted in the over-
estimation of k2 and k3 in HepG2 tumor model. These findings in the
evaluations using real data are consistent with those in the simulation
study. Although the heterogenous distribution of kinetic parameters
was observed in the parametric images generated using the proposed
methods, we could not confirm their validity because of no availability
of histochemical staining data of tumors.

4. Discussions

This study aimed to robustly estimate the individual rate constants
from the highly noisy TACs of a two-tissue compartment model. The
noise in measured TACs led to the bias in this parameter estimation. In
particular, the high noise level in the TACs yielded considerably skewed

distribution of the larger exponents in Eq. (4) with a long tail (Fig. 1).
The method proposed in this study to reduce the bias due to the skewed
parameter distribution is the minimization of infinity norm that takes
the largest elements in a given vector. By minimizing the infinity norm,
we can regularize the larger element not to have extremely large values.

The LMA, the most widely used nonlinear estimation algorithm for
least squares curve fitting, cannot deal with the proposed infinity norm
regularizer that is non-differentiable. This is because the LMA, in each
iteration step to find solution, should use Jacobian and locally linear-
ized Hessian information respectively consisted of the first and second
order partial derivatives. In the LMA, a damping parameter to mix these
two pieces of information is adjusted through the iterations. If the cost
function is rapidly reduced, a small value of damping parameter is used,
and the LMA behaves like Gauss-Newton algorithm that uses both
Jacobian and Hessian information. Otherwise, the damping parameter
is adjusted so that the LMA operates like a gradient-descent algorithm
that only uses Jacobian, yielding slower searching speed than Gauss-
Newton.

Between the alternative algorithms to handle the non-differentiable
optimization problem on account of the infinity norm regularization,
the PSO outperformed the proximal gradient algorithm. The proximal
gradient algorithm that uses only the gradient information of the dif-
ferentiable part of cost function showed slow convergence and was
easily trapped in local minima as shown in Fig. 5a. It would hardly
proceed in the direction of less descent evaluated for nonlinear para-
meters. On the contrary, the PSO based on the random search in the

Fig. 5. CV versus Bias plots for parameter estimation using four different methods. (a) K1. (b) k2. (c) k3. (d) k4.
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Fig. 6. Parameter optimization for l -norm regularization: (a) bias of K1, (b) bias of k2, (c) bias of k3, (d) bias of k4, (e) CV of K1, (f) CV of k2, (g) CV of k3 and (h) CV of
k4,
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parameter space showed better convergence properties than the prox-
imal gradient, indicating this search strategy is more effective than
gradient-based one in this specific optimization problem.

The partial linearization of parameter estimation and the use of
gamma distribution for random particle movement improved the per-
formance of the PSO algorithm. The dimension of nonlinear parameter
space was reduced by the partial linearization that decomposes the
parameter estimation into linear and nonlinear problems.
Consequently, we could reduce the uncertainty and bias caused by the
iterative search of many parameters with the limited number of noisy
data samples. In the original PSO, the randomness of particle movement
is constrained by the uniform random distribution: The particles move
to the far and near points in parameter search space with the same
probability. However, the gamma distribution has more centralized
distribution, allowing for faster convergence, and the extended tail al-
lows for a sudden departure from the local minimum.

The same linearization strategy underlies the BF method, but the BF
and the PSO are different in how to prepare the candidates for ex-
ponents. The BF method picks out the best set of exponents from a pre-
defined bounded and discrete pool of candidates. In contrast, the PSO
searches for the best set by moving particles randomly over unbounded
and continuous parameter space. Therefore, the BF method’s perfor-
mance depends on the size and range of the pool while the PSO is robust
to the initialization of particle positions. For example, the BF method
showed poor performance for region 4 in Fig. 8, but the Unregurlaized
or Regularized PSO showed better results.

The simulation study with dynamic mathematical phantom showed

Fig. 7. Simulated digital phantom and sinogram.

Fig. 8. Parametric images for digital phantom.

Table 3
Normalized root mean square error (NRMSE) for parametric images and various
regions in digital phantom. Bold numbers show the lowest NRMSE values for
each region and kinetic parameters.

K1 k2 k3 k4

Region 1 BF 0.71 0.791 3.814 3.935

LMA 0.743 0.796 3.874 3.952
Unregularized PSO 0.704 0.788 3.859 3.969
Regularized PSO 0.630 0.506 2.629 3.875

Region 2 BF 0.855 0.837 4.474 2.630
LMA 1.276 1.066 7.276 3.642
Unregularized PSO 0.868 1.031 7.238 3.597
Regularized PSO 0.794 0.731 4.919 3.323

Region 3 BF 1.046 1.125 1.539 2.204
LMA 1.033 1.119 1.528 2.136
Unregularized PSO 1.046 1.122 1.538 2.191
Regularized PSO 1.052 0.853 1.251 2.188

Region 4 BF 0.431 0.545 2.075 1.921
LMA 0.232 0.333 1.456 1.015
Unregularized PSO 0.228 0.330 1.471 1.038
Regularized PSO 0.258 0.254 0.982 1.016

Region 5 BF 0.157 0.110 0.584 3.338
LMA 0.161 0.116 0.601 3.324
Unregularized PSO 0.160 0.115 0.617 3.351
Regularized PSO 0.193 0.094 0.428 3.467
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that the proposed method works well through the wide range of rate
constants. On the contrary, the accuracy of LMA depends on the true
values of rate constants. The LMA estimation that started with the same
initial values for all the pixels hardly reach the global minima in the
pixels with true rate constants placed far from the initial values.
However, the PSO particles randomly distributed in search space at the
start would find the global minima more effectively.

A common regularization strategy for kinetic parameter estimation
has been the use of a prior information on the parameters, which was
gained from a separate or the same study. There have been several ways
of directly exploiting such information to tightly regularize the para-
meters, like constraining the parameters within physiologically rea-
sonable fixed bounds, or using a specific reliable value for a global
parameter, if exists, instead of estimating it [39,40]; however, the latter
is more recognized as a model simplification rather than as a regular-
ization framework. More sophisticated and less stringent regularization

approaches have also been developed using a l2-norm regularization
framework that adaptively exploits the prior information depending on
the quality of unregularized estimation [7,26,27,39–50]. Contrary to
these conventional approaches, which constrain the parameters of in-
terest using their prior information, the proposed method regularizes
only one macro parameter, a combination of rate constants, without
using any prior information.

Our infinity-norm regularization framework has a similar formula-
tion (Eq. (8)) with the l2-norm regularization framework, in which the
weighted least squares cost function is augmented by an l2-norm penalty
function measuring the estimate's deviation from prior information and
a regularization parameter governing the impact of the prior informa-
tion on the estimation. The statistical performance of the proposed
framework depends on a regularization parameter value whereas one of
the l2-norm regularization relies on not only a selection of the reg-
ularization parameter but also a formulation of the penalty function.

Fig. 9. Static (left) and parametric (right) images of [18F]FDG PET studies performed in BALB/c nude mice. The yellow arrows under the colorbars indicate the
parameter values estimated in VOI-based analysis using Regularized PSO. (a) HepG2 tumor model and (b) MDA-MB-231 tumor model. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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For kinetic rate constant estimation, investigators have introduced
various formulations of l2-norm penalty function with different per-
spectives on the beneficial prior information, such as a physiological
variation of parameters among different subjects [26,27,39–43,47] or
local spatial variation within the same subject [45,49]. Although these
specification methods have been proved as effective in individual va-
lidations, it is based on the premise that appropriate prior information
is available; moreover, a comprehensive comparison among those
methods is still lacking. To select the regularization parameter, the
l2-norm-based approaches draw on empirical search or approximation
of theoretical methods developed for linear regression (see [50] for a
summary of theoretical methods). Though we also searched for the
optimal value through simulation, a future investigation for an ap-
proximation of other methods available in the literature will be
worthwhile.

There are some limitations of this study. First, the proposed PSO
methods does not provide uncertainty in estimated parameters which
would be important in VOI-based data analysis. Second, the validity of
proposed methods was mainly investigated through simulation studies
and limited number of real data was accessed. Third, only the two-
tissue compartment model with four unknown parameters was in-
vestigated. Incorporation of spillover fraction in the model would be
necessary in the further work.

Machine learning is an active research field in medical imaging
[51–58]. Deep neural networks trained with large data set show better
performance than any other conventional approaches in many pro-
blems in medical imaging, such as denoising, segmentation, and re-
gistration [55,59–63]. Applying this new approaches to the parameter
estimation and direct reconstruction in dynamic PET studies would be

the next step to go, and we warrant the comparison study between the
proposed method with those new approaches.

5. Summary and conclusion

This paper presented a new approach based on the infinity-norm
regularization for PET compartment modeling, which can constrain the
nonlinear kinetic parameters. In solving the infinity-norm regulariza-
tion that involves the non-smoothness cost function, PSO methods
showed much better convergence, owing to the use of multiple initial
values, than a proximal gradient algorithm that was susceptible to the
initial values. In the PSO implementation, the use of a Gamma dis-
tribution to govern random movements improved the convergence rate
and stability compared to a uniform distribution. Consequently, the
Gamma-based PSO with the infinity-norm regularization outperformed
all the methods tested, including conventional LMA, in terms of the
statistical properties. In particular, the randomly moving particles in
PSO secured the robustness to both the local minima and initial values,
which are fatal to the LMA.
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Appendix A

A1. Principle of PSO algorithm

PSO searches for the solution to the optimization problem using a population (or swarm) of candidate solutions called “particles.” Each particle
moves around a given search space by iteratively updating the key elements as follows:

• Each particle’s velocity, current position, and local best position visited until current iteration are v m( )i , x m( )i , and p m( )i
L , respectively, for the

ith particle at the mth iteration. In addition, the population’s global best position visited until current iteration is p m( )G .
• Simple PSO rules were designed to make the movement of each particle random and toward better positions (p m( )i

L and p m( )G ) with inertia,
leading the population to finally converge to the best position.

• The best position of each particle (or the population) means the one yielding the lowest value of the optimization cost function ( f ) among all
positions visited by each particle (or by the population); in addition, p m( )G is shared by all particles.

• In the kinetic-parameter-modeling problem, the position of a particle corresponds to the set of kinetic parameters to be estimated and, in the
particle space, the cost function is defined.

These rules were formulated into mathematical equations (19) through (22). In a nutshell, the PSO finds the optimal solution by comparing the
cost functions computed at all positions visited by all particles during the course of the iterations; i.e., the solution is the best among the N × M
candidates that are randomly chosen and evolved through interactions among themselves. Moreover, the PSO makes no assumptions regarding the
characteristics of the cost function, such as convexity or differentiability, and requires no initial estimates of the parameters. Based on these
properties, we can hypothesize that the random selection of potential candidates (or random movement of particles) through PSO will play a key role
in addressing the local minima issues of conventional NLS approaches in kinetic parameter estimations by offering particles a chance to escape from
the local minima positions through well-designed randomness.

A2. Proposal of Gamma distribution

In standard PSO, 1 and 2 are generated from a uniform distribution between zero and 1, where the variance of their distribution is fixed. In
addition, w is a constant, and thus has no uncertainty. We wanted to adjust the uncertainty of random distributions through the three positions,
x m( 1)i , p m( )i

L , and p m( )G , which are heading to the current position, x m( )i , in Eq. (23). If the cost function values of these three positions are
high, particles must move far from the three positions at current iteration (m). Thus, it is favorable for the three weights to have high uncertainty.
Two random distributions, 1 and 2, must have positive values to force the particles to proceed to the local and global best positions. Accordingly,
we adopted a Gamma distribution that is only in the positive range. The initial means and variances for 1 and 2 were set to have the same values as
the original uniform distribution, and were therefore 0.5 and 1/12, respectively. In the same way, the initial mean and variance for w were set to
0.7298 and 1/12. We calculated the logarithmic values of the cost functions because the raw cost function value of each position has too high a
deviation. Finally, the weights applied to the initial variances of the Gamma distribution were as follows.
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A3. Stopping Criteria, Bias, and CV

The proximal gradient and PSO iterate until the following criterion,

10 ,
k k

k

1
2
2

6

is satisfied or until some maximum numbers of iterations are reached. The maximum iterations for the proximal gradient and PSO are 10,000 and
150, respectively.

For 1000 realizations, the bias and CV were calculated using the following equations.

= ×Bias(%) 100,mean true

true

=CV(%) ,std

true

where mean is the mean of the estimated parameters, std is the standard deviation, and true is the ground truth.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejmp.2020.03.013.
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