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Abstract
Due to the increasing use of preclinical targeted radionuclide therapy (TRT) studies for the development of novel theranostic
agents, several studies have been performed to accurately estimate absorbed doses to mice at the voxel level using reference
mouse phantoms and Monte Carlo (MC) simulations. Accurate dosimetry is important in preclinical theranostics to interpret
radiobiological dose-response relationships and to translate results for clinical use. Direct MC (DMC) simulation is believed to
produce more realistic voxel-level dose distribution with high precision because tissue heterogeneities and nonuniform source
distributions in patients or animals are considered. Although MC simulation is considered to be an accurate method for voxel-
based absorbed dose calculations, it is time-consuming, computationally demanding, and often impractical in daily practice. In
this review, we focus on the current status of voxel-based dosimetry methods applied in preclinical theranostics and discuss the
need for accurate and fast voxel-based dosimetry methods for pretherapy absorbed dose calculations to optimize the dose
computation time in preclinical TRT.
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Introduction

Small animals, especially mice, have been increasingly used
in preclinical research to develop novel theranostic agents and
treatment modalities for human diseases, including cancer [1,
2]. Cancer treatment methods are typically based on the use of
ionizing radiation, e.g., external beam radiotherapy (EBRT),

brachytherapy, and radionuclide therapy. Recently, targeted
radionuclide therapy (TRT), especially peptide receptor radio-
nuclide therapy (PRRT), has gained increasing importance in
the treatment of various cancers, including lymphoma, glio-
blastoma, neuroendocrine tumors, and prostate cancer with
distant metastases [3–7]. TRT can simultaneously target pri-
mary tumor sites and distant metastatic disease that remains
undetectable by diagnostic imaging [8]. Selective uptake and
prolonged retention of the radiopharmaceutical within the tu-
mor are required for successful PRRT [9]. Several new
radiolabeled peptides are being developed to target specific
receptors that are overexpressed in various cancers, such as
glioma, ovarian cancer, neuroendocrine tumor, and cervical
cancer [10, 11]. Such peptides are useful because normal hu-
man organs and tissues exhibit very limited expression of
these receptors.

All cancer therapies that use ionizing radiation, including
TRT, share a common goal: to deliver the highest possible
absorbed dose to the tumor while sparing healthy tissues to
achieve the highest therapeutic efficacy. To fulfill this objec-
tive, the careful selection of radionuclides combined with spe-
cific vectors is required to target the cancer cells. Many pep-
tides conjugated with theranostic radionuclides, such as 177Lu
and 188Re, have been considered valuable tools for novel and
effective anti-cancer therapies [12]. Despite the excellent tu-
mor targeting ability of these radiolabeled peptides, there is
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always a risk of renal and bone marrow toxicity due to the
particulate radiation emitted from the theranostic radionu-
clides [13–15]. Therefore, internal dosimetry for absorbed
dose calculation is essential to obtain absorbed dose-
response relationships during clinical and preclinical TRT
for the evaluation of therapeutic outcomes and toxicities
[16–18]. However, accurately assessing the absorbed dose in
tumors and normal organs or tissues during TRT treatment
planning remains challenging [19–21].

Absorbed doses in small animals can be calculated using a
Medical Internal Radiation Dose (MIRD) scheme if animal-
specific S values (mean absorbed dose in a target organ per
radioactivity decay in a source organ) are determined [22–24].
However, an organ-level MIRD method does not consider
patient- or animal-specific anatomies and activity distributions
because it assumes that there are homogeneous activity distri-
butions in organs and a generalized geometry [25, 26].
Therefore, the inclusion of nonuniform activity distributions
and tissue heterogeneity has been considered important for
more accurate absorbed dose calculations at the voxel level
[26–30]. This article reviews the current status of preclinical
voxel-based dosimetry methods applied in theranostics and
discusses the need for accurate and fast dosimetry methods
to calculate pretherapy absorbed dose at the voxel level to
optimize the dose computation time in preclinical TRT.

Radionuclides for Preclinical TRT

The selection of radionuclides is crucial in TRT treatment
planning and should be performed individually, based on the
characteristics of the tumor, adjacent tissues, and affinity for
the targeting compound. The radionuclides that emit particu-
late radiation (α, β, and Auger) are of primary interest for
TRT to cause non-reparable DNA damage by radiation-
induced ionization [31, 32]. Because peptides are internalized,
the physical and chemical characteristics of the radionuclides
used in TRTshould be fully explored [19]. Physical properties
of radionuclides that are important for clinical and preclinical
applications are mode of production, half-life, type of emis-
sion, particle energy, the maximum range of particles emitted,
and linear energy transfer (LET).

Although many radioisotopes can be used as radiation
sources, only a few have been developed and applied in pre-
clinical and in vivo studies; these include 111In, 68Ga, 64Cu,
90Y, 188Re, and 177Lu. Due to their inherent theranostic na-
tures, 177Lu and 188Re are used for both diagnostic and thera-
peutic purposes [33]. The shorter tissue penetration range of
177Lu may reasonably exert a more favorable effect on small
tumors compared with 90Yand 188Re [19]. Radionuclides that
emit gamma emission are desirable in theranostics because
monitoring of in vivo radiopharmaceutical distribution as well
as the assessment of pre- and post-therapy dosimetry is

possible. Radionuclides used in diagnostics emit a large frac-
tion of distributed radiation energy, whereas radionuclides for
therapy are designed to deposit the energy from radioactive
decay locally [34]. A list of common therapeutic radionuclides
with their physical properties and applications is presented in
Table 1.

Imaging Modalities for Preclinical TRT
and Dosimetry

During the preclinical development of radiopharmaceuticals,
numerous small animals are injected with radioactive agents
and sacrificed at different time points to obtain biodistribution
data of the injected radiopharmaceutical for the assessment of
toxicity and efficacy [16]. Recently, due to the advancement in
high-resolution radionuclide imaging, a variety of small-
animal single-photon emission computed tomography
(SPECT) and positron emission tomography (PET) protocols
were developed for preclinical imaging studies of radiolabeled
peptides and antibodies to investigate disease development
and therapy response [35–38]. PET imaging for small animals
has been consideredmore accurate for quantitative studies due
to its higher sensitivity and good spatial resolution [39, 40].
SPECT provides three-dimensional (3D) spatial information;
however, physical quantities such as photon attenuation, scat-
tering, and partial volume errors influence the absolute quan-
tification of SPECT images [41].

Several researchers have proposed different techniques to
solve these issues. Consequently, preclinical SPECT/CT cam-
eras with multi-pinhole collimators have been developed to
increase system sensitivity while maintaining good spatial
resolution [42–45]. Finucane et al. [46] conducted phantom
imaging using 111In and 99mTc sources and obtained quantita-
tively accurate information from a multi-pinhole SPECT/CT
camera to assess radiotracer biodistribution in mouse models;
these assays can replace conventional dissection studies.
Gupta et al. [47] performed several phantom studies using
177Lu and 99mTc to evaluate the system performance of a
multi-pinhole SPECT/CT and found that the parameters eval-
uated are suitable for obtaining quantitatively accurate SPECT
images of mice for personalized dosimetry in preclinical 177Lu
PRRT. The CT-derived anatomic information obtained from
integrated SPECT/CT improves SPECT quantification and
organ delineation in TRT, which is an essential step in 3D
voxel-based dosimetry [26, 48].

Organ-Level Internal Dosimetry

Internal dosimetry is the method of absorbed dose calculation
in a volume of interest (i.e., whole organ, tumor, or voxel)
from internally distributed radionuclides in radionuclide
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imaging and therapy. The absorbed dose of each organ de-
pends on the physical properties of the radionuclide, the
injected activity, and the kinetics of uptake and clearance of
radioactivity within the tumor and normal tissue or cells [49].

The method for calculating the absorbed dose of radiation
from internal sources was formulated by theMIRD committee
of the Society of NuclearMedicine in the 1960s [50].MIRD is
a dosimetry method that uses S values (mean absorbed dose in
a target organ per radioactivity decay in a source organ), also
known as dose factors released by the Radiation Dose
Assessment Resource (RADAR) group, especially for human
organ sizes and relationships [30, 50, 51]. According to the
MIRD schema [30], the average absorbed dose D(rT, TD) is
given by

D rT ; TDð Þ ¼ ∑
rs
∫TD

0 Ae rs; tð Þ S rT←rsð Þdt; ð1Þ

where rT is the target organ, and Ae (rs, t) is the time-integrated
activity in source organ rs over the dose integration period,TD.

The absorbed dose in small animals can be calculated using
the MIRD schema if murine-specific S values are supplied
[16, 22–24, 52]. However, the application of the MIRD meth-
od for the calculations of absorbed dose in mice is not direct
because the size and relationship of mouse organs are signif-
icantly different than those of humans [27, 28, 53]. In addition,
the anatomical difference between humans and mice becomes
more important when the dosimetry is performed for beta-
emitting radionuclides. The cross-beta absorbed dose should
be considered when usingMIRD formalism for mouse dosim-
etry because the size of organs in mice and the range of beta

particles are the same order of magnitude. In addition, organs
are very close to each other in mice [54, 55].

Based on the MIRD formalism and RADAR method of
dose calculation, several dosimetry applications were devel-
oped. MIRDOSE [56] and Organ Level Internal Dose
Assessment/Exponential Modeling (OLINDA/EXM) [57]
are the most widely used fixed geometry dosimetry software
packages. Organ-level dosimetry applications based on stan-
dard phantoms are inadequate for absorbed dose calculations
in TRT because they do not incorporate patient-specific or
tumor dosimetry. However, OLINDA/EXM is capable of
modeling simple tumors in the form of unit density spheres
of various sizes based on the absorbed fractions by assuming
uniform activity distributions [58]. Because it is not always
possible to model the size, shape, and location of every unique
tumor with the reference phantoms used in OLINDA/EXM,
this approach does not provide information about the 3D dose
distribution in tumors [57–59].

Voxel-Level Dosimetry Using a MIRD Schema

Absorbed dose calculations can also be performed at the voxel
level. Several researchers have addressed the limitations asso-
ciated with organ-level dosimetry, and various steps have been
taken to extend the MIRD schema to absorbed dose calcula-
tions at the voxel level by using voxel S values [29, 30].
MIRD pamphlet no. 17 [29] summarizes the methods of
voxel-based dosimetry using voxel S values in the MIRD
formalism that require the assessment of the 3D distribution

Table 1 Common therapeutic radionuclides with their physical properties and applications (maximum energy and particle range in tissues are reported
for beta emission)

Radionuclide Half life (physical) Useful emissions Energy Particle range in tissue (Rmax) Application

188Re 16.9 h β− Emax, β
−: 2.12 MeV 11 mm Theranostics

γ Eγ: 155 (10%) keV
177Lu 6.73 days β− Emax, β

−: 0.498 MeV 2 mm Theranostics

γ Eγ: 208 (11%), 113 (6%) keV
166Ho 28.8 h β− Emax, β

−: 1.85 MeV 8.7 mm Theranostics

γ Eγ: 81 (7%) keV
153Sm 46.5 h β− Emax, β

−: 0.805 MeV 0.33 mm Theranostics

γ Eγ: 103 (28%), 70 (5%) keV
131I 8.02 days β− Emax, β

−: 0.606 MeV 0.42 mm Theranostics

γ Eγ: 364 (81%), 637 (7%) keV
111In 67.4 h γ

e− Auger
Eγ: 173 (83%), 247 (94%) keV
E: 0.5–25 keV

10 μm
550 μm

e− IC E: 144–245 keV Theranostics
90Y 64.1 h β− Emax, β

−: 2.28 MeV 11.3 mm Therapy only
89Sr 50.5 days β− Emax, β

−: 0.583 MeV 0.7 mm Therapy only
64Cu 12.8 h β− Emax, β

−: 0.570 MeV 2.5 mm Theranostics

β+ Emax, β
+: 0.653 MeV 0.7 mm
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of the radiopharmaceutical within the body. According to

Bolch et al. [29], mean absorbed doseD to a given target voxel
k from N surrounding source voxels h (including the target
voxel itself, h = 0) can be calculated using the following equa-
tion:

D voxelkð Þ ¼ ∑
N

h¼0
Aevoxelh :S voxelk←voxelhð Þ; ð2Þ

where Aevoxelh is the time-integrated activity in the source vox-
el, h and S(voxelk← voxelh) are the voxel S values that are
defined as the mean absorbed dose to a target voxel per radio-
activity decay in a source voxel, both of which are contained
in an infinite homogenous tissue medium [29].

Tabulations of voxel S values for several voxel dimensions
calculated with MC code for a few radionuclides were report-
ed in MIRD pamphlet no. 17. The MIRD formalism using
voxel S values is possibly the most accepted and easy to im-
plement method for voxel-based dosimetry that does not re-
quire volume integrations of the dose point kernel (DPK) over
sources and targets [60]. However, the preclinical voxel S
value dataset for different radionuclides at various voxel sizes
is not yet available to perform voxel-based dosimetry in small
animals using a MIRD schema. Moreover, a voxel S value
approach does not consider tissue nonhomogeneity during
absorbed dose calculations [29, 30].

Voxel-Based Small Animal Models

Over the past two decades, there have been significant devel-
opments in the generation of digital models of mice and rats
for the calculation of organ-absorbed doses in preclinical TRT.
Among these models, the majority of mouse phantoms are
stylized, containing organs with simplified geometries [27,
28, 55]. With advancements in high-resolution tomographic
imaging systems (CT and MRI), more anatomically realistic
voxel-based models have emerged, either from tomographic
images or from digital photographs of mice cryosections
[61–64]. Significant differences in absorbed dose results have
been reported when stylized and voxel-based models have
been used in Monte Carlo simulations [63–65]. Hindorf
et al. [55] used stylized mathematical models for mouse do-
simetry and observed discrepancies in the calculated S values
that led to differences in absorbed dose calculations, particu-
larly for high-energy beta emitters, when the mass, shape, and
relative locations of organs within the mouse body were con-
sidered. Their results showed that S values could differ as
much as 80% from their true value if linear interpolation from
S value tables is used to obtain an S value for the specific mass
of an organ. They further found that the shape of an organ is
not crucial for S value calculation. However, their results
showed that the cross-absorbed S value is strongly dependent

on geometry and emitted radiation. The new high-quality
mesh-type adult reference computational phantoms developed
by the International Commission on Radiological Protection
(ICRP) include all important source and target tissues for the
estimation of effective dose, thereby obviating the need for
supplemental organ-specific stylized models [66].

In 2004, Segars et al. developed 4D digital mouse body
(MOBY) and rat body (ROBY) phantoms that are based on
non-uniform rational b-spline (NURBS) mathematical models
to define organ boundaries [67–69]. Several researchers have
adopted MOBY phantoms for MC simulations to calculate
organ S values for absorbed dose estimation in TRT [17, 23,
24, 70–73]. However, a study performed by Mauxion et al.
[23] demonstrated the limitations of using digital mouse
models for MC-based absorbed dose calculations. They ob-
served very different dose distributions in some organs when
two similar mouse models generated from the same software
were used. Kostou et al. [17] and Boutaleb et al. [52] conclud-
ed that no specific digital mouse model could be applied for
individualized dosimetry in murine studies because small var-
iations in mouse anatomy may significantly affect the
absorbed dose results (Fig. 1).

Monte Carlo Radiation Transport Codes

Many MC radiation transport codes, such as MCNPx,
EGSnrc, PENELOPE, and Geant4/Geant4 Application for
Emission Tomography (GATE), were developed in the last
few years to calculate absorbed dose at the voxel level.
Following the development of more realistic preclinical
voxel-based phantoms, several dosimetry studies have been
performed using these MC codes to estimate small animal-
specific absorbed fractions (SAFs), organ-level S values, and
voxel S values for various diagnostic and therapeutic radionu-
clides [60–64, 70–73]. EGSnrc [74] and MCNPx [75] have
been widely accepted and are considered reference MC codes
for dosimetry simulations involving electron-photon transport
at low energies down to 1 keV. Bitar et al. calculated S values
for various radionuclides, including 90Yand 188Re, for a large
number of source-target combinations using the MCNP MC
Code in a 30-g mouse model [63]. Xie and Zaidi generated an
S values database for various PET radionuclides using
MCNPX MC in the MOBY phantom for the assessment of
radiation dose to mice [70]. Lanconelli et al. provided a free
dataset of voxel S values for therapeutic radionuclides, includ-
ing 177Lu, at various voxel sizes for TRT dosimetry using
DOSXYZnrc code [60].

Recently, the GATE, an MC toolkit [76] based on Geant4
[77], is being used frequently for both clinical and preclinical
dosimetry applications. By using Geant4, we can simulate the
electromagnetic interactions of photons, electrons, hadrons,
and ions with matter down to the electron volt energy scale
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[77, 78]. Various studies have been performed to validate the
reliability and accuracy of GATE MC for preclinical dosime-
try [17, 23, 72].

Voxel-Based Dosimetry

In TRT, normal tissue toxicity and therapeutic efficacy are of
great concern, and there is much less tolerance for inaccura-
cies in absorbed dose calculations. Therefore, to consider non-
uniform activity distributions in organs for accurately calcu-
lating absorbed dose, voxel-based dosimetry methods that use
DPK [79, 80] or voxel S value (VSV) approaches [51] have
been suggested. The DPKmethod of voxel-based dosimetry is
limited when compared with the VSV approach because it
requires CPU-intensive conversions of spherical coordinates
to Cartesian coordinates over the target volumes. The use of
the VSV approach is also limited because of the requirement
for a VSV database of each radionuclide at various voxel
sizes. Moreover, these methods do not incorporate heteroge-
neity in the organ tissues into the absorbed dose calculations.

Direct MC (DMC) simulation is believed to produce more
realistic dose distributions at the voxel level with high preci-
sion because it can handle tissue heterogeneity as well as
nonuniform source distributions [81–84]. With advancements
in 3D imaging modalities and user-friendlyMC codes, several
groups have developed personalized dosimetry tools for clin-
ical applications, such as 3D Internal Dosimetry (3D-ID) [85],
the Royal Marsden Dosimetry Package (RMDP) [86],
VoxelDose [87], 3D Radiobiological Dosimetry (3D-RD)
[81], Dose Planning Method (DPM) [88], RAYDOSE [89],
and VIDA [90]. Recently, Bednarz et al. [65] introduced an
MC-based preclinical dosimetry platform, called the
Radionuclide Assessment Platform for Internal Dosimetry
(RAPID), which is capable of calculating murine-specific
3D dose distributions.

Although DMC simulation has been validated for clinical
TRT dosimetry applications, only a small number of preclin-
ical dosimetry studies using DMC simulation have been

reported [17, 23, 72, 91–93]. Furthermore, these studies used
standard mouse models, such as the MOBYphantom, for MC
dosimetry simulations. In recent preclinical dosimetry simula-
tions performed with MOBYphantoms, authors demonstrated
that small variations in organ anatomy could significantly im-
pact the dose calculations [17, 52]. Therefore, they suggested
that personalized dosimetry might not produce accurate
absorbed dose values when a specific murine model is used
for preclinical TRT. Using 3D imaging data from individual
mice in MC simulations might reduce errors in voxel-based
dose calculations arising from the variation in organ anato-
mies and activity distributions. Gupta et al. [93] evaluated
the feasibility of GATE MC simulations for preclinical
voxel-based absorbed dose calculations using 18F-FDG PET/
CT imaging data of individual normal mice. Because GATE
MC simulation considers tissue heterogeneity and nonhomo-
geneous activity distributions within the mouse body, the
voxel-based absorbed doses, as calculated from 18F-FDG
PET data in their study, are considered to be more realistic
andmouse-specific. From the validation study, it was conclud-
ed that the GATE MC simulation toolkit could be applied to
murine-specific voxel-based dosimetry in preclinical PRRT to
perform tumor absorbed dose calculations more accurately
(Fig. 2).

177Lu-Based Preclinical PRRT Dosimetry

Peptide receptor TRT using 177Lu has gained an established
role in the preclinical assessment and implementation of clin-
ically relevant diagnostics or therapeutics [94–100]. 177Lu is a
theranostic radionuclide having several advantages in
performing imaging studies for the evaluation of radiotracer
biodistribution as well as for cancer therapy [95]. The lower
tissue penetration range and the efficient cross-fire effect of
177Lu may kill small tumors more effectively relative to other
theranostic radionuclides [19]. Because of their short range,
β-particles emitted from 177Lu traverse several cells (10–
1000), causing the destruction of multiple cells in the vicinity

Fig. 1 Examples of mouse
models. a Stylized (Hindorf et al.
2004). b MOBY (Segars et al.
2004). c Bitar et al. (2007)
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of the cells that accumulate the radiotracer [94, 95]. This effect
is known as the “cross-fire effect” and is crucial for ensuring
that a sufficient dose is delivered to each cell and for improv-
ing the homogeneity of tumor dose during cancer therapy
[96].

Quantitative 177Lu-SPECT Imaging

The absorbed dose calculations for PRRT are based on resi-
dence times obtained from serial quantitative SPECT/CT im-
ages acquired at multiple time points. Hence, the quantitative
accuracy during 177Lu-SPECT imaging is essential for reliably
assessing tumor uptake and tumor-to-normal tissue ratios nec-
essary to perform personalized dosimetry [101–103].
Accurate image quantitation in small animal SPECT is always
challenging due to the limitations in the instrumentation and
imaging process; therefore, it is important to evaluate perfor-
mance parameters of preclinical SPECT systems used for
theranostic radionuclides during pre- and post-therapy dosim-
etry studies [103, 104]. Mezzenga et al. [103] evaluated the
quantitative accuracy of 177Lu SPECT imaging for both small
and large objects using cylindrical homogeneous reference
geometry. The authors investigated the relationship between
3D-OSEM algorithm, object size, and coefficient of variation
to demonstrate that 177Lu SPECT is suitable for activity quan-
tification in small volumes.

Gupta et al. [47] performed several phantom studies to
evaluate the quantitative accuracy and performance parame-
ters (recovery coefficient, uniformity, spatial resolution, and
sensitivity and calibration factor) of a multi-pinhole SPECT/
CT system for 177Lu imaging. They investigated the relation-
ship between activity recovery and image uniformity at differ-
ent iteration numbers during iterative image reconstructions
(3D-OSEM). In addition, the performance parameters of the
SPECTcamera measured for 177Lu were compared with those
of 99mTc. The quantitative accuracy achieved in their study
plays an important role in activity quantification when
performing 177Lu-SPECT imaging in mice for personalized
dosimetry.

Murine-Specific 177Lu-Dosimetry

The activity administered during radionuclide therapy is gen-
erally determined conservatively to avoid potential toxicity;
however, this approach may result in sub-therapeutic treat-
ments, causing cancer recurrence [105]. In clinical trials,
177Lu therapy delivered at a fixed level of activity shows
promising results in terms of treatment outcome.
Nevertheless, several studies showed that pretherapy patient-
specific dosimetry plays an important role in treatment plan-
ning during TRTof various cancers to improve the probability
of tumor control and reduce normal tissue toxicity [106–108].
This concept may also apply to preclinical TRT using 177Lu-
labeled radiopharmaceuticals, and voxel-based dosimetry is
essential to achieve more accurate dosimetry results for the
interpretation of the radiobiological response. However, only
a few voxel-based dosimetry studies of preclinical 177Lu TRT
that are based on MC simulations of digital murine models
have been reported [109–112].

Vilchis-Juarez et al. [49] performed voxel-based dosimetry
using MC codes and compared the absorbed doses in kidneys
and tumors to evaluate the therapeutic response of 177Lu-
AuNP-RGD in athymic nude mice bearing α(v)β(3)-
integrin-positive C6 gliomas. Haller et al. [109] investigated
the therapeutic anti-tumor effects and radiation-induced neph-
rotoxicity of 177Lu-cm09 and 177Lu-EC0800 in KB tumor-
bearing mice by estimating equivalent absorbed doses using
PENELOPE MC simulation code. Kuo et al. [110] synthe-
sized 177Lu-HTK01169, a close analog of 177Lu-PSMA-
617, and performed biodistribution and dosimetry studies in
mice bearing PSMA-expressing LNCaP tumor xenografts
using SPECT/CT imaging and OLINDA software v.2.0.
Timmermand et al. [111] performed whole-body and small-
scale tumor dosimetry of 177Lu-labeled hu11B6 in an LNCaP
tumor-bearingmicemodel using mouse-specific S-factors cal-
culated with the MCNP6 MC package. Gupta et al. [112]
recently synthesized 177Lu-IONPs-Folate for preclinical
targeted imaging and therapy of folate receptor-positive can-
cer and calculated voxel-based organ absorbed doses using
SPECT/CT images of normal and KB tumor-bearing mice

Fig. 2 Voxel-based dosimetry based on direct Monte Carlo (DMC) sim-
ulation. a CT image of a mouse used for GATEMC simulation. bOutput
of simulation or dose map. c Dose map overlaid on the CT image.

Coronal (left) and sagittal (right) views of the images are shown respec-
tively in the figure. Gupta et al. [93]
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using a GATE MC simulation. They compared kidney- and
tumor-absorbed doses at the voxel level obtained with 177Lu-
IONPs-Folate with those obtained with 177Lu-labeled folic
acid without IONPs (177Lu-Folate) and 177Lu-IONPs only.
They found that the voxel-based absorbed dose to kidneys
from 177Lu-IONPs-Folate was almost half relative to that ob-
tained with 177Lu-Folate only. The tumor dose at the voxel
level received from 177Lu-IONPs-Folate was the highest when
compared with those of 177Lu-Folate and 177Lu-IONP. Their
study suggested that voxel-based dosimetry using MC simu-
lations is reliable and potentially more accurate for 177Lu-
IONPs-Folate therapy of folate receptor-positive cancers on
a personalized basis (Figs. 3 and 4).

Fast Voxel-Based Dosimetry for Preclinical
TRT

Although MC simulation is currently the most accurate meth-
od for voxel-based absorbed dose calculations, it is time-con-
suming, computationally demanding, and often impractical to
carry out in practice [113, 114]. Therefore, several groups
have proposed fast, voxel-based dosimetry methods based
on DPK, multiple VSV, and semi-Monte Carlo (sMC) tech-
niques that have been shown to overcome the limitations as-
sociated with the DMC method in clinical dosimetry
[115–119].

Hippeläinen et al. [117] proposed a fast sMC code for
177Lu PRRT dose calculations, which was based on the

assumption of local electron absorption and fast photon MC
simulations. Since the simulations of electrons are the most
demanding part of MC simulations, electron absorption as-
sumptions accelerate the absorbed dose calculations dramati-
cally. Their results suggested that there is no need of electron
simulation for 177Lu absorption calculations when SPECT
imaging system is used. Therefore, when the sMC method is
applied with its local electron absorption assumption, voxel-
based dosimetry, especially for 177Lu PRRT, can be success-
fully performed with four SPECT/CT scans in 4 to 5 min.
However, this fast sMC dosimetry method is only applicable
to low-energy electrons emitted from 177Lu because this meth-
od has not yet been validated for radioisotopes emitting high-
energy electrons, such as 90Y or 131I.

Recently, Lee et al. [119] proposed a fast and new method
for voxel-based absorbed dose calculations using multiple
VSVs that considers both nonhomogeneous activities and het-
erogeneous media. They applied MC simulation to acquire
multiple VSVs with various densities and utilized them to
acquire dose maps using CT-based segmentation. The authors
successfully implemented the proposed dosimetry approach
on digital phantom and whole-body dynamic 68Ga-PET im-
ages of patients. The results obtained were comparable to
those with the DMC technique and had the advantage of a
significantly reduced dose-computation time. Because their
proposed dosimetry method was fast and more accurate and
generated dosemaps at the whole-body level, it can be applied
for personalized dosimetry in TRT. Most recently, Lee et al.
[120] proposed a voxel-based dosimetry approach using a

Fig. 3 Maximum intensity
projection images showing dose
maps overlaid on the CT images
of 177Lu-Folate (a), 177Lu-IONPs-
Folate (b), and 177Lu-IONPs (c)
obtained with GATE MC
simulations of SPECT/CT of KB
tumor-bearing mice acquired at
6 h post-injection. Energy depos-
ited in the tumor at the voxel level
was the highest from 177Lu-
IONPs-Folate compared with
those from 177Lu-Folate and
177Lu-IONPs. Gupta et al. [112]
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deep convolutional neural network (CNN) to overcome the
limitations of the DMC method. Their CNN-based personal-
ized dosimetry approach produced results comparable to that
of DMC simulation, but with significantly lower computation
time. This novel method appears to be more advanced and fast
compared to traditional dosimetry methods because new deep
learning methods routinely outperform conventional signal
and image analysis techniques in multiple medical engineer-
ing fields [121–126].

Extrapolation of Data from Mouse to Human

Because it is possible to translate preclinical dosimetry data to
a clinical setting, preclinical research using small animals has
been used with increasing frequency to develop novel
theranostic agents and to establish a relationship between
absorbed dose and biological effects during preclinical TRT
[23, 65]. Because very few patient-specific dosimetry studies
are available in clinical theranostics, the ability to extrapolate
data from mouse to human for the assessment of absorbed
dose in the critical organs from novel theranostic radiophar-
maceuticals is essential.

Various authors reporting preclinical TRT studies have pre-
sented methods to extrapolate dosimetry values from preclin-
ical to clinical settings for the evaluation of radiation-induced
organ toxicity and treatment response during clinical trials of
new radiopharmaceuticals [127–132]. However, several as-
sumptions and technical complexities arise during the mea-
surement of radiotracer biodistribution and the extrapolation
of data from the animal model to humans [132]. In addition,
predetermined absorbed dose values in humans that are de-
rived from animal dosimetry data have not been validated.
Stabin et al. presented a method for extrapolating
biodistribution uptake data from mice to human for dosimetry
calculations that was based on two options for interspecies
scaling [57, 133].

During the extrapolation of data from mouse to human, sev-
eral factors have been reported to cause discrepancies between
mouse- and human-derived organ-absorbed doses. The varia-
tion in size and anatomy, interspecies differences in pharmaco-
kinetics, andmethodological differences in biodistributionmea-
surements were considered to be the main factors responsible
for such discrepancies. Repetto-Llamazares et al. [131] calcu-
lated the absorbed dose in mice from 177Lu-tetraxetan-tetuloma
b and 177Lu-tetraxetan-rituximab and successfully extrapolated
the dosimetry data to a human absorbed dose. Sakata et al.
[132] observed that the extrapolation of data from mouse to
human is roughly acceptable; however, the differences in the
proportions of organ mass to total body mass cause inconsis-
tencies in the predicted dosimetry for human subjects. Hence,
dosimetry studies in humans to assess radiation risk and dose-
response relationships are essential for clinical trials of newly
developed theranostic radiopharmaceuticals.

Future Perspective

Due to the increasing use of preclinical TRT studies for the
development of novel theranostic agents, several studies have
been performed to accurately estimate absorbed doses to mice
at the voxel level using reference mouse phantoms and MC
simulations. The fast voxel-level dosimetry approaches devel-
oped for clinical TRT studies could also be validated for pre-
clinical voxel-based dosimetry to reduce computation time
when longitudinal SPECT/CT imaging of mice is performed.
Accurate absorbed dose calculations at the voxel level are
necessary to interpret the radiobiological response during per-
sonalized therapy of small animals. In EBRT, the methods for
evaluating radiobiological effects are well established; how-
ever, a dedicated dosimetry method needs to be developed for
TRT for radiobiological modeling.

Three-dimensional imaging-based dosimetry applications
that have already been applied [85–90] to patient-specific

Fig. 4 Voxel-based absorbed
doses in organs and tumor (mean
± SD) calculated by GATE MC
from 177Lu-Folate, 177Lu-IONPs,
and 177Lu-IONPs-Folate in KB
tumor-bearing mice. Gupta et al.
[112]
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dosimetry should also be upgraded and validated for voxel-
based absorbed dose calculations in preclinical TRT. Bednarz
et al. [65] recently proposed a preclinical voxel-based dosim-
etry platform, called RAPID, that is capable of calculating
murine-specific 3D dose distributions from theranostic agents
used for imaging and therapy. In addition to absorbed doses,
dose-volume histograms (DVH) can also be calculated using
RAPID to assess the absorbed dose heterogeneity in the tu-
mors. Furthermore, RAPID is currently being upgraded to
calculate the biologically effective dose (BED) at the voxel
level, which will be useful for radiobiological interpretation
and modeling of the dose distribution for response assessment
in preclinical TRT. The use of real 3D imaging data of mouse
instead of the standard mouse model for MC simulations
could further reduce errors in mouse-specific absorbed dose
calculations because this approach considers the individual-
ized organ anatomy and activity distributions of each mouse
during dosimetry simulations.

Conclusion

The estimation of absorbed doses from radionuclides has be-
come essential for preclinical studies that use small animals
because these estimations are essential to the development of
novel theranostic agents. The development of more realistic
voxel-based preclinical phantoms and user-friendly advanced
MC codes has mademore accurate absorbed dose calculations
at the voxel level possible for preclinical theranostics.
Although voxel-based dosimetry using MC simulation is cur-
rently the most accurate technique, it is cumbersome and time-
consuming. Fast voxel-based absorbed dose calculations
based on DPK, multiple VSV, and sMC techniques have been
shown to overcome limitations associated with the DMC
method in clinical dosimetry. The extension of such methods
to preclinical TRT dosimetry would be very useful for opti-
mizing the computation time required to perform absorbed
dose calculations. In this review article, we discussed the pres-
ent scenario of preclinical imaging and dosimetry at the voxel
level that is performed using various voxel-based murine
models and MC radiation transport codes. We also presented
the limitations of various voxel-based dosimetry methods and
gave an overview of the possibilities for fast voxel-based
absorbed dose calculations in preclinical theranostics.
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