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 
 
Abstract—Attenuation correction (AC) is essential for the 

generation of artifact-free and quantitaAtively accurate positron 
emission tomography (PET) images. PET AC based on computed 
tomography (CT) frequently results in artifacts in attenuation-
corrected PET images, and these artifacts mainly originate from 
CT artifacts and PET-CT mismatches. The AC in PET combined 
with a magnetic resonance imaging (MRI) scanner (PET/MRI) is 
more complex than PET/CT, given that MR images do not provide 
direct information on high energy photon attenuation. Deep 
learning (DL)-based methods for the improvement of PET AC 
have received significant research attention as alternatives to 
conventional AC methods. Many DL studies were focused on the 
transformation of MR images into synthetic pseudo-CT or 
attenuation maps. Alternative approaches that are not dependent 
on the anatomical images (CT or MRI) can overcome the 
limitations related to current CT- and MRI-based ACs and allow 
for more accurate PET quantification in stand-alone PET 
scanners for the realization of low radiation doses. In this article, 
a review is presented on the limitations of the PET AC in current 
dual-modality PET/CT and PET/MRI scanners, in addition to the 
current status and progress of DL-based approaches, for the 
realization of improved performance of PET AC.  
 

Index Terms—Attenuation correction, deep neural network, 
PET/MRI, positron emission tomography.  

I. INTRODUCTION 

ANY physical and patient factors influence the image 
quality and quantitative accuracy of ionizing radiation-

based tomographic imaging techniques. If these factors are not 
properly considered and corrected, the quality and accuracy of 
tomographic images are degraded. In positron emission 
tomography (PET), which involves the collection of two high 
energy (511 keV) annihilation photons emitted from positron-
emitting radioisotopes; photoelectric absorption and Compton 
scattering of high energy annihilation photons are among the 
major physical factors that degrade the reconstructed images 
(Fig. 1) [1]. The photoelectric absorption and Compton 
scattering of the photons result in the loss of coincidence events 
(attenuation) in PET (Fig. 2). The effects of the photon 
attenuation are larger in PET than in single-photon emission 
computed tomography (SPECT), given that the loss of one of 
the two annihilation photons leads to the failure of coincidence 
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event detection. However, the attenuation correction (AC) is 
straightforward in PET, given that the attenuation for the 
projection of coincidence events is independent of the position 
along the chord of projection (line-of-response) [2, 3]. 

Dual-modality hybrid PET systems require more accurate 
AC methods [4]. The quality of attenuation-corrected PET and 
SPECT images is significantly improved by combining them 
with x-ray computed tomography (CT) [5-7]. In the PET/CT, 
CT scans provide the linear attenuation coefficient map (μ-map: 
attenuation map for 511 keV photon) with better spatial 

resolution and higher counting statistics than conventional 
transmission PET scans [8-10]. However, the CT-based AC 
results in frequent artifacts in attenuation-corrected PET images. 
These artifacts, that mainly originate from CT artifacts and 
PET-CT mismatch, lead to errors in PET interpretation and 
quantification [11-15]. The AC in PET combined with a 
magnetic resonance imaging (MRI) scanner (PET/MRI) is more 
complex than PET/CT, given that magnetic resonance (MR) 
images do not provide direct information on high energy photon 
attenuation [16-19]. Although various approaches have been 
proposed to overcome this drawback [20], issues remain to be 
solved in some applications.  
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Fig. 1. Physics in PET attenuation: (a) photoelectric 
absorption and (b) Compton scattering.  
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Brain-dedicated stand-alone PET scanners require AC 
methods that do not use transmission data or other modality 
images. Moreover, total-body PET/CT scanners exhibited 
issues related to the radiation exposure due to the CT part. With 
the aging of the global population, neurodegenerative disorders 
such as Alzheimer’s dementia and Parkinson’s disease have 
become a major health issue. PET allows for the highly 
sensitive and specific assessment of energy metabolic changes, 
amyloid plaque depositions, dopamine transporter losses, and 
many other pathologic changes in the brains of patients with 
neurodegenerative diseases. Therefore, various brain-dedicated 
PET scanners with different design concepts have been recently 
developed, most of which are stand-alone systems with no 
transmission sources or anatomical imaging modality 
combinations [21, 22]. A total-body PET scanner with a 2-m 
long axial field-of-view is creating new opportunities for 
clinical research and patient care [23, 24]. Given that the total-
body scanner yields an approximately 40-fold sensitivity gain 
over existing PET scanners for the imaging of the entire body, 
it allows for PET scans to be conducted at extremely low 
radiation doses. However, an x-ray CT for AC and anatomical 
localization is required, thus limiting the low-dose capability of 
total-body PET [24]. 

With the advances of machine learning in medical imaging 
fields, various machine-learning approaches for the 
improvement of PET AC have been proposed [25-51]. Among 
these approaches, deep learning (DL)-based methods have 
attracted significant research attention as alternatives to 
conventional AC methods. Many DL studies were focused on 
the transformation of MR images into a synthetic pseudo-CT or 
μ-map [34-44, 52]. Other approaches that are not dependent on 
the anatomical images (CT or MRI) can overcome limitations 
with respect to current CT- and MRI-based ACs and allow for 
more accurate PET quantification in stand-alone PET scanners 
for the realization of low radiation doses [25-33]. 

Therefore, this article provides a review on the following 
topics to provide the readers of IEEE Transactions on Radiation 
and Plasma Medical Sciences with the most up-to-date 
information on PET AC technology: 

 
- The limitations of the PET AC in current dual-modality 

PET/CT and PET/MRI scanners, and the challenges in 
stand-alone organ-specific and total-body PET scanners.  

- Current status and progress of DL-based approaches for the 
realization of improved PET AC performances.   

An assumption was made that the readers of this review 
paper are familiar with the fundamental physical principles of 
PET image acquisition and the reconstruction and correction 
processes in PET. Literature on the background of PET physics, 
reconstruction, and corrections are available elsewhere if 
required [3, 53-57]. In addition, the details of artificial neural 
networks (ANNs) and DL techniques are not presented, given 
the many available references [58-61].  

In this paper, Section Ⅱ overviews the previous PET AC 
methods that use long-lived external radionuclides or body 
contours and Section Ⅲ summarizes the limitations of current 
CT-based AC. Section Ⅳ then overviews the state-of-the-art 
AC methods that are currently used for PET/MRI scanners. 
Each sub-section describes the principles and limitations of 
each method. Section Ⅴ presents the challenges in new 
emerging brain-dedicated stand-alone and total-body PET 
scanners, and Section Ⅵ describes the advances in 
simultaneous activity and attenuation reconstruction. In Section 
Ⅶ, previous artificial intelligence researches in nuclear 
medicine are summarized. Section Ⅷ introduces recent DL-
based approaches that are used for the transformation of 
diagnostic and non-diagnostic MR images into pseudo-CT or μ-
map, and Section Ⅸ presents the DL-based AC methods that 

 
 

Fig. 2. Events in PET: (a) true coincidence, (b) scatter coincidence, and (c) loss of coincidence event due to photoelectric 
absorption. 
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are not dependent on the anatomical images. Finally, in Section 
Ⅹ, a scope for future research is provided.  

II. CONVENTIONAL AC 

A. Transmission PET 

In the era of stand-alone PETs that were not combined with 
anatomical imaging modalities, a ring or rotating rod(s) of long-
lived external radionuclides (68Ga/68Ge or 137Cs) were used for 
the acquisition of the data required for the correction of the 
attenuation and scatter. Using the external radionuclides, 
transmission and blank scans were acquired respectively with 
and without objects (patients, phantoms, etc.) within the PET 
scanner (Fig. 3) [2, 3]. The ratio of the blank and transmission 
scans in the sinogram space provides attenuation correction 
factors (ACFs) used for the correction of the attenuation of 
annihilation photon pairs in the emission PET scan. The μ-map 
can be also reconstructed from the blank and transmission data. 
For the estimation and correction of scattered coincidences in 
the PET data, various empirical and analytical methods have 
been proposed [57]. Among them, the most commonly used 
method for modern clinical PET scanners is a single scatter 
simulation with tail-fitting scaling [62-65]. This method allows 
for an analytical estimation of the scatter contribution to 
projections, given the μ-map and the initial estimate of the 
scatter-free radioactivity distribution. These attenuation and 
scatter correction methods using the long-lived external 
radionuclides can significantly improve the quantitative 
accuracy of PET images. However, the main technical issues 
related to these methods are the extended scan time by the 
addition of the transmission scan and the increased noise in 
emission PET data due to the noise propagation from the noisy 
transmission scan [7].  

 

B. Segmented and Calculated AC 

Segmented and calculated ACs are alternative methods that 
provide noise-free μ-maps with reduced scan times. In the 
segmented AC, the measured μ-map derived from the 
transmission and blank scan data is segmented into several 
tissue types, and the known attenuation coefficient for each 
tissue type is assigned [66]. Although this method is useful for 
the reduction of the noise in attenuation-corrected PET images, 
there are several limitations, which include the susceptibility to 
the segmentation error and the variable tissue densities across 
the patients. The calculated AC was mainly used for brain PET 
studies [67, 68]. The head contour is extracted from uncorrected 
emission data, and the uniform attenuation coefficients for soft 
tissue and skull and constant skull thickness are assumed. 
Although this approach provides a noise-free μ-map and 
requires no transmission scan, a considerable activity bias in 
parietal and occipital lobes is the main limitation [69, 70]. 

III. CT-BASED AC: LIMITATIONS 

The x-ray CT data obtained using dual-modality PET/CT 
scanners has enhanced the confidence of PET findings by 
providing more accurate anatomical information. Moreover, the 
patient throughput and image quality of PET scans have been 
significantly improved by the use of CT data for PET AC, given 
that the CT scan is more rapid and yields less noise than 
conventional transmission scans used in PET [5, 7]. Given that 
CT uses low energy x-rays, the CT Hounsfield units must be 
converted into linear attenuation coefficients for photons with 
an energy of 511 keV usually using a bilinear relationship [7, 
10]. Although the CT-based AC has several advantages over 
transmission scans with long-lived radionuclides, there are 
various error sources in CT-based AC (Fig. 4) [71].  
 

 
 

Fig. 3. AC using long-lived external radionuclides: (a) blank scan, (b) transmission scan with positron-emitting sources 
(68Ge/68Ga), and (c) transmission scan with a single-photon source (137Cs). 
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- Most artifacts shown in reconstructed CT images result in 
artifacts in attenuation-corrected PET images. The most 
common error source is the propagation of metal artifacts 
in CT due to the high-Z materials used in surgical and 
dental implants into the reconstructed PET images (Fig. 
4(a)) [13, 14]. In general, regional PET activity around the 
high-Z materials is significantly overestimated (Fig. 4(b)).  

- CT generally has a smaller field-of-view than PET, thus 
leading to the truncation of the shoulders and arms of large 
patients in the CT images. Although these truncated body 
parts do not appear in the CT images, they cause 
attenuation in PET. These missing data in the CT-based μ-
map lead to the underestimated ACF and attenuation-
corrected PET activity (Fig. 4(c)) [72, 73]. 

- Given that x-ray photon flux in CT is significantly higher 
than the annihilation photon flux in PET, simultaneous 
PET/CT scans result in considerable cross-talk artifacts in 
PET images. Therefore, current PET/CT scanners are 
configured in a side-by-side tandem arrangement, thereby 
allowing for sequential CT and PET scans. Consequently, 
the movement of patients between the sequential CT and 
PET scans results in the misalignment of the PET and CT 
images and transmission-emission mismatch artifacts [74-
76].  

- Artifacts due to spatial mismatches between PET and CT 
due to heartbeat and respiratory motions are common in 
CT-based attenuation-corrected PET images (e.g., banana-
shape artifacts in the boundary between upper liver and 
lower lung, and artifactual defects in the myocardial PET) 
(Fig. 4(d)) [12, 15]. Although several different approaches 

have been proposed for the reduction of the misalignment 
artifacts based on a slow CT or a cine-CT [77, 78], the main 
drawback of these methods is increased radiation 
transmitted to the patients.   

IV. AC IN PET/MRI 

It should be noted that PET/MRI has several advantages 
over PET/CT, which include a smaller amount of radiation 
transmitted to the patients and improved contrast between 
different soft tissues [5, 18, 79-82]. In addition, MRI allows for 
the multiparametric assessment of pathologic tissues based on 
many different MRI pulse sequences. Besides the anatomical 
assessment based on the most conventional T1 and T2 contrast 
imaging method, various functional and physiological 
processes (i.e. perfusion and diffusion) can be captured using 
MRI. Therefore, the advantages of PET/MRI have been 
clarified in various diagnostic procedures, which include head, 
neck, prostate, breast, musculoskeletal, and neuroendocrine 
tumor imaging [19, 83-88]. Moreover, the advances in 
semiconductor photosensors such as avalanche photodiodes 
and silicon photomultipliers have allowed for simultaneous 
PET/MR imaging [80, 81, 89-93]. This simultaneous PET/MRI 
scan allows for an improved spatio-temporal correlation 
between two modalities when compared with PET/CT, in 
addition to motion correction in PET based on motion 
information derived from MRI [94-97].  

However, accurate PET attenuation and scatter corrections 
are limited in PET/MRI. The image intensity of MRI and CT 
(or transmission PET) are determined by different physical 
principles. For example, their image intensities are mainly 
dependent on the proton and electron densities, respectively. 
Moreover, the MR image contrast is determined by the different 
relaxation times of the MR-active nuclei in different molecules 
and environments. In contrast, the amount of high-energy 
photon attenuation is measured in CT or transmission PET 
scans. There is currently no direct MR estimation method for 
such a high energy photon attenuation. Hence, several indirect 
approaches are employed in PET/MRI [16, 18-20, 98]. 
However, the accuracy of these AC methods has been proven 
to be within acceptable quantitative limits only in the adult 
brains with normal anatomy [20].  
 

A. Dixon MRI-based  

In current clinical PET/MRI scanners, μ-map generation for 
body PET/MRI scans is mainly based on the Dixon MRI pulse 
sequence [99-101]. The Dixon MRI exploits the different 
precession rates of proton spins in water and fat molecules [102]. 
Therefore, they are alternatively in-phase and out-of-phase. 
From the simultaneously obtained in-phase and out-of-phase 
images, water-only and fat-only images can be generated. By 
assigning pre-determined attenuation coefficients to the fat- and 

 
Fig. 4. Sources of imaging artifacts in PET/CT: (a) metal 
implants, (b) contrast medium, (c) body truncation, and (d) 
respiratory motion. (Reprint from [71] with permission; © 
2005 SNMMI) 
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water-equivalent tissues and segmented lung regions, a four-
segment (background, lungs, fat, and water) μ-map is generated 
(Fig. 5) [101]. The difference between attenuation-corrected 
PET images using CT-based and Dixon MRI-based μ-maps is 
dependent on the location of lesions. The variation of the lung 
attenuation coefficient for different patients is large [103-106], 
and the liver has a higher attenuation coefficient than other 
water segments [107]. Given that the contribution of bone to the 
511-keV photon attenuation is not considered in the Dixon 
MRI-based AC, the difference is largest in osseous lesions 
where the PET activity is considerably underestimated (Fig. 6) 
[101, 107-109]. To overcome the abovementioned limitations 
of the Dixon MRI-based four-segment method, a model-based 
approach was proposed [110, 111]. In the model-based 
approach, bone structures are added to four-segment maps 
using bone templates and image registration (Fig. 7). However, 
the inaccurate registration between PET images and bone 
models can lead to errors in PET activity quantification [28].  

The smaller field-of-view of MRI when compared with PET 
can cause truncation artifacts in PET AC. For example, the arms 
of the patients are not completely covered by MRI when the 

patients are scanned with their arms hanging downward. The 
arm truncation in the MRI-based μ-map of whole-body 
PET/MRI scans leads to a considerable bias in PET activity 
quantification [112]. The missing parts in the MRI can be 
estimated from the non-attenuation-corrected PET. 
Alternatively, the μ-map for missing parts can be derived using 
the maximum likelihood reconstruction of activity and 
attenuation (MLAA) algorithm [113], which is a simultaneous 
activity and attenuation reconstruction algorithm. However, the 
MLAA-based approach frequently yields overestimated arm 
volumes and associated artifacts. Similarly, the MLAA enables 
the estimation of other missing parts in the μ-map, such as 
flexible MRI coils and metal implants [114, 115]. The MLAA 
can be further improved in the case where time-of-flight (TOF) 
is known as in recent PET/MRI scanners. HUGE (B0 
homogenization using gradient enhancement) is a fully MR-
based truncation compensation method that determines an 
optimal readout gradient for the compensation of gradient 
nonlinearities at the peripheral MR field-of-view (Fig. 8) [116]. 

 
Fig. 5. Dixon MRI-based AC: (a) Dixon water image, (b) 
Dixon fat image, (c) attenuation map generated by combining 
the water and fat images, and (d) CT scan of the same patient. 
(Reprint from [19] according to the publisher’s open access 
policy) 
 

 
Fig. 6. Difference between AC methods: (a) CT-based AC, 
(b) Dixon MRI-based four-segment method, and (c) 
difference between (a) and (b). 
 

 
Fig. 7. Local bone masks employed for a model-based AC 
method in PET/MRI. (Reprint from [110] with permission; 
© 2015 SNMMI) 
 

 
Fig. 8. HUGE: an MRI-based truncation correction method.  
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The HUGE exhibited an improvement in the μ-map generation 
and PET quantification; however, it requires additional MRI 
scans to cover both arms. 

B. UTE 

For brain PET/MRI studies, the contribution of the skull to 
the annihilation photon attenuation is high relative to the soft 
tissues. Therefore, two different approaches are mainly used for 
the generation of PET μ-maps that include bone. The derivation 
of PET μ-maps from the ultra-short echo time (UTE) [99, 117-
125] or zero echo time (ZTE) MR images [126-131] is one of 
the two approaches. In these methods, patient-specific bone 
information is captured from the MR images of the patient, and 
discrete or continuous bone attenuation coefficient values are 
estimated. The UTE and ZTE pulse sequences that commonly 
use radial k-space sampling and fast switching between 
transmitting and receiving radiofrequency (RF) pulses depict 
bones based on T2*-weighting and proton-density-weighting, 
respectively [132]. Given that the proton density is low 
(approximately 20% of water) and T2 relaxation occurs rapidly 
(approximately 390 μsec at 3.0 T) in cortical bone tissues [133]; 
the bone signal is low in conventional MR images (e.g. T1 and 
T2), and bone structures cannot be distinguished from the air. 
In the UTE sequence employed in the Siemens mMR PET/MRI 
scanner (Siemens Healthineers, Knoxville, TN), the first echo (MR 
signal observed following excitation pulse(s)) is sampled at 
maximum speed (70–150 μs) after the excitation, and the 
second echo is sampled as in the conventional MRI sequences 
(≥ 1 ms) [121, 123]. By the subtraction/division of the second 
long echo-time image from/by the first ultrashort echo-time 
image, the bone and soft tissue can be distinguished (Fig. 9) [99, 
120, 121, 123, 125].  

However, these images, especially the second longer echo-
time image, are sensitive to off-resonance effects owing to B0 
inhomogeneity and susceptibility. The off-resonance effects 
result in inhomogeneity artifacts that can lead to inaccurate 
image segmentation and bone delineation [134]. In addition, the 
UTE images are subject to eddy current artifacts, given that 
UTE sequences require samples to be acquired during rapidly 
changing gradient fields [118]. Therefore, frequent 
segmentation errors were observed at the boundaries between 
soft tissue, bone, and air in the initial versions of the UTE-based 
μ-maps [119, 121, 135, 136]. Moreover, there were instances 
wherein the ventricles in the brain were misclassified as air 
[135].  

Some methods have been proposed for the improvement of 
the UTE-based AC. Aitken et al. measured true k‐space 
trajectories during a dual-echo UTE sequence using a dynamic 
magnetic field camera and obtained reconstructed UTE images 
using the measured trajectories to compensate for the eddy 
current artifacts in UTE images [118]. In this method, a one-
time calibration scan is required, and the measured trajectories 
can be used in all subsequent image reconstructions for the 
same set of scan parameters. An et al. improved the UTE-based 
AC by the application of a multi-phase level-set algorithm for 
the UTE MRI segmentation, in which the intensity 
inhomogeneity correction was incorporated. The PET 
quantification error was reduced by a factor of 3 by the 
application of the level-set segmentation to the UTE MR 
images [119]. Several methods were proposed for the 
association of the MR relaxation time R2* and CT Hounsfield 
unit to provide continuous-valued attenuation coefficients for 
bone [122, 124]. A combination of UTE with Dixon MRI or 
atlas-based segmentation is an alternative approach for the 

 
Fig. 9. UTE MRI-based AC: (a) the first echo (echo time (TE) = 0.7 ms), (b) the second echo (TE = 2.46 ms), (c) the difference 
between (a) and (b), (d) UTE-based μ-map, and (e) CT of the same patient. (Reprint from [19] according to the publisher’s 
open access policy) 
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improvement of UTE-based μ-map generation [99]. Despite 
continuous improvements in the UTE-based method, 
segmentation errors are observed, especially with respect to 
neck or face/nasal regions [117, 119].  

C. ZTE 

The ZTE pulse sequence also provides enhanced bone 
contrast in MR images. In the ZTE MRI, the signal is obtained 
immediately after the RF excitation, thus allowing for the 
contrast from the proton-density difference to be determined 
[137]. The ZTE does not require long T2 suppression methods 
such as the echo subtraction used in UTE; thus, ZTE has a 
superior signal-to-noise ratio and scan time efficiency than 
UTE [138]. In addition, ZTE is robust against off-resonance 
effects and gradient system imperfections [132]. In the ZTE-
based μ-map available in the GE SIGNA PET/MRI scanner (GE 
Healthcare, Chicago, IL, USA), bone and tissue masks are 
derived from reconstructed ZTE images by the application of 
bias correction and intensity normalization, followed by a 
histogram-based thresholding operation and piecewise linear 
intensity mapping [126, 127, 130, 139]. Based on two 
thresholds, the images are segmented into three classes, namely, 
soft-tissue, bone, and air, given that the bone has a distinct 
intensity between the soft-tissue and air peaks in the intensity 
histogram of the ZTE MRI (Fig. 10).  

The main drawback with respect to the ZTE-based AC 
method is the misclassification of the regions with 
air/tissue/bone mixtures (e.g., nasal sinus cavity and temporal 
bones) or their interfaces as bone [129, 131]. The PET 
quantification error due to this misclassification in the skull 
base can be reduced by the application of a sinus-edge-
correction method, in which the sinus and edge masks are 
generated for removal of the false-positive bone pixels [131]. In 
addition, the ZTE-based method with the improved 
segmentation in the sinus and temporal bones [126] exhibited a 
superior performance to the atlas-based method in a 

comparative brain 18F-fluorodeoxyglucose (18F-FDG) 
PET/MRI study with a relatively large number of subjects [129].  

Furthermore, a limited number of studies have been 
conducted for the application of the ZTE MRI to body parts 
apart from the brain. A hybrid method was proposed by Leynes 
et al., who combined the ZTE and Dixon MRI information for 
the generation of pseudo-CT images in pelvic regions. In this 
method, a continuous two-segment piecewise linear model is 

 
Fig. 10. ZTE MRI-based AC: (a) intensity histogram of ZTE MRI after logarithmic re-scaling, (b) ZTE MRI, and (c) soft tissue 
(blue) and bone mask (green) obtained with segmentation. (Reprint from [127] with permission; © 2015 SNMMI) 
 

 
Fig. 11. Combination of atlas-based and segmentation-based 
method: a challenging case showing a large tumor in the 
ventricles and skull thickness change after the surgical 
procedure. (a) MRI, (b) atlas/segmentation-based μ-map, and 
(c) CT-based μ-map (Reprint from [143] with permission; © 
2014 SNMMI) 
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used to convert the ZTE MR image intensity in bone into 
Hounsfield units [128]. 
 

D. Atlas-based 

An alternative approach used in brain PET/MRI is the atlas-
based AC method [45, 47, 140-148]. A single atlas-based 
method is used for GE SIGNA PET/MRI scanners [147]. In this 
method, a single head atlas generated from multiple head CT 
images is registered with a bone-enhanced LAVA-Flex (two-
point Dixon sequence in GE SIGNA PET/MRI scanner) in-
phase MR image. The registered head CT atlas is combined 
with a head contour derived from the MR image for the 
generation of a μ-map. Given that the LAVA-Flex MRI 
sequence is short and only a single nonlinear image registration 
is carried out, this relatively simple approach allows for a more 
efficient PET/MRI workflow [147]. Alternatively, an atlas that 
consists of a CT and MRI pair (single or average) can be utilized. 
For a new given subject, the MRI atlas is registered with the 
MR image of the new subject, and the same registration 
parameters are applied to the CT atlas to be transformed to the 
subject-specific pseudo-CT [47, 144, 146]. The atlas-based 
methods are less sensitive to the MRI acquisition artifacts than 
segmentation-based approaches.  

However, the main limitation of the single atlas-based 
method is the error due to the residual misregistration, which 
can be mainly attributed to inter-patient anatomic variations [19, 
99]. In general, it is not suitable for patients after surgery and 
those with implants. The solutions to the drawbacks of the 
single atlas-based method include the combination of atlas-
based and segmentation-based methods [45, 47, 142, 143] (Fig. 
11) and the use of multiple atlases [141, 145, 148]. In the multi-
atlas-based approaches, the regional intensity distribution of the 

pseudo-CT is optimized by applying a weighted average of 
multiple pseudo-CT images derived from a large dataset of CT 
and MRI atlas pairs, thus reducing the error in the PET AC due 
to incomplete registration and patient variability; which,  
however, increases the computational time (Fig. 12). Although 
the atlas-based approaches exhibited suitable performances in 
the brain PET/MRI studies, with the exception of postoperative 
patients and patients with implants, the application of the atlas-
based approaches to the entire-body PET/MRI studies is still 
challenging due to their limitations with respect to the 
significant anatomical variations of the organs in the chest and 
abdomen, especially in cancer patients.    
 

E. AC for RF Coils 

Although MR RF coils cause significant attenuation of PET 
photons, they are not typically visible in MR images. The 
attenuation by rigid coils, such as the head and spine coils, in 
addition to the patient table, is corrected by the addition of the 
CT-based μ-map of these components to the patient μ-map. 
However, the AC for flexible coils is not conducted in 
commercial PET/MRI scanners although PET quantification 
errors up to 20% are yielded [149-151]. There is a modified 
MLAA algorithm proposed to estimate the attenuation of 
flexible coils and other hardware components [115]. A detailed 
review on the AC for MR coils in PET/MRI can be found in 
[149]. 

 

 
Fig. 12. Multiple atlas-based AC. (Reprint from [141] with permission; © 2014 IEEE) 
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V. NEW EMERGING PET SCANNERS 

A. Brain-dedicated PET 

With the aging of the global population, neurodegenerative 
diseases such as Alzheimer’s disease and Parkinson's disease 
have become more common. Moreover, PET is a useful clinical 
tool for the accurate visualization of the biomarker presence in 
the brain related to various neurodegenerative diseases (e.g., 
amyloid-β plaques or strands of microtubule-associated protein 
tau) [152-155]. However, a relatively high level of radiation 
exposure and a long scan time, in addition to the high costs of 
hybrid PET/CT and PET/MRI scans, are the main drawbacks of 
current PET examinations. For the solution of these drawbacks, 
many brain-dedicated stand-alone PET scanners have been 
developed, such as helmet-type or wearable PET scanners used 
on seated patients [21, 156-159] (Fig. 13 (a)).  

As previously mentioned, a major technical limitation to 
brain-dedicated stand-alone PET scanners is the lack of 
physically measured μ-maps for attenuation and scatter 
corrections. The calculated AC based on pre-determined 
attenuation coefficients for soft tissue and bone is a simple 
solution for brain-dedicated PET scanners [67, 68]. However, 
the accuracy of the calculated AC is limited by the non-
uniformity of tissue compositions owing to pathologic 
conditions and the complex structure of facial bones. Moreover, 
the calculated AC generally leads to the underestimation of the 
brain PET intensities in frontal and occipital lobes [69, 70]. 
Although the atlas-based AC method is an alternative solution, 
it exhibits similar drawbacks, as previously described [131]. 
 

B. Total body PET/CT 

The low-dose capacity of total-body PET/CT is limited by 
the CT radiation dose. A major factor that determines the 

physical sensitivity of the PET scanner is the axial length. By 
the increase of the axial length from 20 cm to 2 m in total-body 
PET, the effective sensitivity of the PET scan is increased by 
40-fold [23]. For the same scan time and counting statistics, the 
radiation dose in the PET scan can be remarkably reduced (Fig. 
13 (b)). However, the radiation dose from the CT scan that still 
needs for anatomical localization and AC is considerably high 
[24]. The CT dose reduction based on deep neural networks has 
attracted significant research attention in the medical imaging 
field [160-162], especially with respect to effective dose 
reduction in the total body PET/CT.   

In the applications that do not require detailed anatomical 
information provided by CT, emission-only approaches, as 
described in the following sections, are effective for the 
realization of extremely low-dose studies. In particular, the DL-
based conversion of non-attenuation-corrected PET to 
attenuation-corrected PET [29-33], in addition to the DL-
enhanced simultaneous activity and attenuation reconstruction 
[25-28], are suitable.  
 

VI. SIMULTANEOUS ACTIVITY AND ATTENUATION 

RECONSTRUCTION 

A potential solution to the abovementioned drawbacks 
related to PET/CT and PET/MRI, in addition to stand-alone 
brain PET and total-body PET, is simultaneous activity and 
attenuation reconstruction. However, the performance of the 
current simultaneous activity and attenuation reconstruction 
algorithms is dependent on the timing resolution of the PET 
scanner.  

The application of spatial constraints to the uncertainty of the 
event location in PET activity reconstruction by the use of the 
TOF information allows for an increase in the effective 
sensitivity of the PET system and improvement of signal-to-
noise ratio [163, 164]. The effective gain in the sensitivity, 
which is dependent on the patient size and system timing 
resolution, allows for the improvement of the diagnostic 
accuracy of PET and/or the reduction of the scan time or 
radiation dose [165]. The TOF information is effective for the 
reduction of the PET image artifact or quantification error due 
to inconsistent or missing data in PET measurements. This is 
because the TOF information allows for a more accurate 
determination of the annihilation event location in the line-of-
response [166, 167]. Therefore, the images of the PET systems 
with precise timing resolution are influenced less by photon 
attenuation and Compton scattering. In addition, the TOF PET 

 
Fig. 13. New emerging PET scanners: (a) brain dedicated 
PET scanner without CT, (b) low-dose imaging with total 
body PET (10 min scan obtained 52.5 min after the 
intravenous injection of 25 MBq 18F-FDG). (Reprint from 
[23, 156] with permission; © 2019 SNMMI and IPEM) 
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systems yield fewer artifacts due to the misalignment of 
emission and transmission data in AC than non-TOF PET 
systems (Fig. 14) [168, 169].  

The information on the spatial origin of annihilation photons 
provided by TOF measurement allows for the distinction of 
events due to the radiotracer within the body from those due to 
external transmission sources. Simultaneous emission and 
transmission scans with external transmission sources based on 
the TOF information were proposed to overcome the limitations 
of the current AC methods in PET/MRI [170]. Moreover, the 
natural background radioactivity present in the lutetium-based 
scintillators used in PET scanners can be discriminated from the 
emission events based on TOF information. Upon the decay of 
176L due to beta emission with prompt cascading gamma-rays 
with the energies of 307 keV, 202 keV, and 88 keV; a 
transmission scan can be obtained by using 307 keV and 202 
keV gamma rays simultaneously with an emission PET scan 
[171].  

The TOF information allows for a more accurate 
simultaneous reconstruction (or joint estimation) of the activity 
and attenuation based only on the attenuated emission dataset 
[172-175]. As demonstrated theoretically and experimentally, 

the solution of simultaneous reconstruction is determined up to 
a constant based on available TOF information [173]. An 
effective method for simultaneous reconstruction is the 
previously mentioned MLAA algorithm. In the MLAA, activity 
and attenuation images are updated by the alternate application 
of the maximum-likelihood expectation maximization  and 
maximum-likelihood transmission tomography equations [174]. 
Given that the μ-map is provided with the activity image, 
image-domain priors for the improvement of the accuracy and 
convergence of the algorithm (e.g., zero attenuation outside 
body contour and known attenuation in some body parts) can 
be applied [166, 174]. However, due to the insufficient timing 
resolution of current clinical PET systems, the MLAA is subject 
to slow convergence, the high noise level in the μ-map, and the 
crosstalk between the activity and attenuation distribution [172]. 
Another approach to the simultaneous activity and attenuation 
reconstruction is the maximum-likelihood attenuation 
correction factor (MLACF) [176, 177]. Given that the MLACF 
allows for the determination of the ACF without the 
reconstruction of the μ-map, the convergence rate is higher and 
the computation complexity is lower than those of the MLAA. 
However, the knowledge of the total prior activity is necessary 
for MLACF to determine the constant scaling, given that no 
image-domain prior can be applied. In addition, a scatter 
estimate of the emission measurement should be assumed in the 
joint estimation algorithms [178].  

Several methods have been proposed for the improvement of 
the MLAA algorithm [178-180]. For example, a Gaussian 
mixture model was employed in the attenuation estimation to 
utilize the prior knowledge that the histogram of the attenuation 
values generally consists of several distinct peaks 
corresponding to fat, soft-tissue, and bone [180]. In this 
approach, spatial information derived from the Dixon MR 
images was incorporated into the Gaussian mixture model for 
the enhancement of known tissue types, thereby leading to the 
considerable suppression of noise and cross-talk. Ahn et al. 
proposed another approach for the exploitation of the synergies 
between the MLAA- and Dixon-based AC (Fig. 15) [179]. In 

 
Fig. 14. Robustness of TOF PET to the errors in data 
correction (phantom images reconstructed without the 
application of the physical correction factors). (Reprint from 
[168] with permission; © 2017 AAPM) 
 

 
Fig 15. Joint estimation of activity and attenuation using MRI-
based prior: (a) Dixon in-phase MRI, (b) Dixon MRI-based μ-
map, (c) MLAA μ-map without MRI-based prior, and (d) 
MLAA μ-map with MRI-based prior. (Reprint from [179] with 
permission; © 2018 IPEM) 
 

 
Fig. 16. Combined atlas-based AC and pattern recognition: 
(a) Dixon in-phase MRI, (b) CT-based AC, (c) Dixon MRI-
based AC, and (d) combination of atlas and pattern 
recognition. Upper row: μ-maps. Bottom row: corresponding 
emission images. (Reprint from [108]; © 2011 SNMMI) 
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this method, the weight of the Dixon MRI-based prior used in 
the MLAA framework was modulated based on the MR signal 
strength. In the regions with strong MR signals, such as those 
of soft tissue and fat, large prior weights were applied. 
Conversely, a small weight is assigned to the regions where the 
MR signal was low and the tissue class cannot be clearly 
distinguished, which may include bones, internal air, metallic 
implants, and lungs; thus allowing for the estimation of 
attenuation coefficients in these regions based on the MLAA. 
Recently, iterative methods that estimate the scatter distribution 
during the MLAA reconstruction accelerated using an ordered 
subset were proposed as more practical solutions for PET AC 
[166, 178].  

VII. ARTIFICIAL INTELLIGENCE IN NUCLEAR MEDICINE 

Artificial intelligence and machine learning are two of the 
most widely investigated mathematical and engineering 
techniques in the biomedical engineering field [181-187]. In 
recent decades, various techniques based on artificial 
intelligence and machine learning have been applied to nuclear 
medicine images. For a more accurate determination of the 
annihilation photon interaction position in the scintillation 
crystal array in the PET detector block, position decoding 
methods based on ANNs have been proposed [188, 189]. Data-
driven approaches such as blind source separation techniques 
based on unsupervised neural networks have been extensively 
researched for the extraction of different physiological 
components (e.g., arterial input function for kinetic modeling) 
from dynamic PET scans [190-193]. In addition, various 
machine learning techniques have been applied to myocardial 
perfusion SPECT images for the identification of the perfusion 
defects and location, in addition to the improvement of the 
diagnostic and prognostic accuracies [194].  

Moreover, attempts were initially made to utilize the ANNs 
for the improvement of the AC in nuclear medicine images [48-
51]. Yu et al. used an ANN that involves a principal component 
analysis and multilayer perceptron for the improvement of the 
segmented AC. The input to the ANN was the local matrix with 
7 × 7 pixels of the measured μ-map, as obtained using 
transmission data over a period of 5 min, and the outputs were 
the conditional probabilities that the center pixel of the matrix 
was related to the three different tissue classes (air, lung, and 
soft tissue) [48]. The desired output of the ANN for each pixel 
was assigned based on the segmented attenuation map obtained 
using transmission data over a period of 3 h. The trained ANN 
yielded superior μ-maps and corresponding emission images 
than the measured AC. In addition, there was no significant 
difference between the qualities of the images based on 
transmission data over periods of 5 min and 25 min with the 
application of the ANN-based segmented AC method. The 
scatter estimation from five energy windows was estimated 
using an ANN by Ogawa et al. [49]. Moreover, ANN-based 
simultaneous scatter and attenuation compensation in SPECT 
and planar scans were also attempted [50, 51].  

 
Fig. 17. Different DL-based approaches for PET AC. 
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Hofmann et al. recently proposed an MR-based AC method 
that combined atlas-based AC and pattern recognition using a 
registered atlas as prior knowledge [46, 47]. In this approach, 
non-rigid registration is conducted between MRI/CT pairs in 
the atlas database and the new MR image of the subject, and all 
the neighboring MR patches are found in the registered 
database to perform Gaussian process regression on patch and 
position to yield a CT estimate for every pixel. This approach 
allows for the PET quantification with a mean error of 3.2% in 
the brain and 7.7% in whole-body PET images. However, the 
error was high in the thorax region (14.0%), and in patient with 
metal implants (Fig. 16). Ribeiro et al. combined atlas-based 
and UTE MRI-based AC methods using a feed forward neural 
network [45]. In this method, neighboring pixel values in a 
registered CT atlas and UTE MR images were inputted into the 
neural network to yield an estimated CT value for each pixel. 

In the bone region of the head, the ANN-based approach 
exhibited a higher Dice similarity (0.77) than the atlas-based 
method (0.51). 

In most areas of nuclear medicine, DL-based image 
processing and analysis techniques have received significant 
research attention [184, 195, 196]; namely, the DL-based image 
reconstruction and denoising for radiation dose reduction [197-
200], automatic segmentation of various organs and structures 
for quantitative image analyses [201, 202], image spatial 
normalization [203, 204], voxel-based internal dosimetry [205], 
and the image-to-image transition for PET AC. Moreover, the 
DL-based lesion detection and image interpretation received 
significant research attention [206-209].  
  Several different DL-based approaches have been proposed 
for PET AC, as summarized in Fig. 17 and Table Ⅰ. For the 
realization of improved AC in PET/MRI studies, deep neural 

TABLE Ⅰ 
DL-based approaches for PET AC 

Approach Reference Input Output Network Region PET tracer 

Diagnostic 
MRI to 
Pseudo-CT 

Nie [40] T1 MRI Pseudo-CT FCN Pelvis Not used 

Nie [39] T1 MRI Pseudo-CT GAN Brain/Pelvis Not used 

Han [42] T1 MRI Pseudo-CT U-net Brain Not used 
Bradshaw 
[43] 

T1, T2 MRI Pseudo-CT Multi-scale CNN Pelvis 18F-FDG 

Liu [41] T1 MRI Pseudo-CT CAE Brain 18F-FDG 

Spuhler [38] T1 MRI CT μ-map  U-net Brain 
11C-WAY-100635 
11C-DASB 

Arabi [44] T1 MRI Pseudo-CT GAN Brain 18F-FDG 

Non-
diagnostic 
MRI  
to Pseudo-CT 

Jang [37] UTE MRI Pseudo-CT CED Brain 18F-FDG 

Ladefoged 
[36] 

UTE MRI Pseudo-CT U-net Brain 18F-FET 

Leynes [35] 
ZTE, Dixon 
MRI 

Pseudo-CT U-net Pelvis 
18F-FDG 
68Ga-PSMA-11 

Torrado-
Carvajal [34] 

Dixon MRI Pseudo-CT U-net Pelvis 
18F-FDG 
18F-choline  

Gong [224] Dixon MRI Pseudo-CT CycleGAN Brain 18F-FDG 

NAC PET  
to Pseudo CT 

Liu [30] NAC PET Pseudo-CT CAE Brain 18F-FDG 

Armanious 
[33] 

NAC PET Pseudo-CT GAN Brain 18F-FDG 

Dong [31] NAC PET Pseudo-CT CycleGAN WB 18F-FDG 
NAC PET  
to Corrected 
PET 

Shiri [29] NAC PET Corrected PET CAE Brain 18F-FDG 

Dong [32] NAC PET Corrected PET CycleGAN WB 18F-FDG 

Improved 
Simultaneous 
Reconstruction 

Hwang [26] MLAA output CT μ-map  
CAE, U-net, 
Hybrid 

Brain 18F-FPCIT 

Hwang [28] MLAA output CT μ-map  U-net WB 18F-FDG 

Shi [25] MLAA output CT μ-map  U-net WB 18F-FDG 

FCN: fully convolutional neural network, GAN: generative adversarial networks, CNN: convolutional neural network, CAE: 
convolutional auto-encoder, CED: convolutional encoder–decoder, UTE: ultra-short echo time, ZTE: zero echo time, NAC: 
non-attenuation-corrected, MLAA: maximum likelihood reconstruction of activity and attenuation 
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networks are employed for the conversion of diagnostic or non-
diagnostic MR images to a pseudo-CT or μ-map [34-44]. 
Alternative approaches are as follows: the derivation of pseudo-
CT or attenuation-corrected PET images from non-attenuation-
corrected (NAC) PET, and the improvement of the outputs of 
simultaneous activity and attenuation reconstruction using DL 
[25-33].  

VIII. DEEP LEARNING: MRI TO CT 

In recent years, significant research attention has been 
directed toward the derivation of pseudo-CT from MR images 
based on DL approaches. The objective of the abovementioned 
studies was the utilization of MR images for PET AC in 
PET/MRI, and radiation treatment planning based on MRI 
[210-213]. In radiation treatment planning, the superior soft-
tissue contrast of MRI relative to CT allows for a more accurate 
treatment target and normal structure delineation [214]. The 
MR-only simulation and planning based on the MRI-to-CT 
conversion has several advantages over those based on co-
registered CT, namely, the minimization of the dosimetric error 
due to spatial mis-registration and the temporal changes of 
anatomy between MRI and CT. Moreover, the inconveniences 
and costs of patients can be reduced by the elimination of 
redundant CT scans [215].   

 

A. Diagnostic MRI to Pseudo-CT 

The initial studies conducted on the utilization of DL 
methods for the generation of pseudo-CT from MRI were 
focused on the conversion of MR images obtained using routine 
diagnostic MR pulse sequences such as T1 and T2 into the 
pseudo-CT images [38-44]. The T1-weighted MR images are 
obtained using a short TE and repetition time (TR), and their 
intensity contrast is predominately determined by the T1 
relaxation properties of tissues. The T1 pulse sequence provides 
anatomical images with close proximity to the tissue 
appearances in the macro scale. The T2-weighted MRI is 
produced using long TE and TR times that yield the image 

contrast determined by the T2 relaxation properties. Unlike the 
UTE, ZTE, and Dixon MR images currently used for AC in 
PET/MRI, T1 and T2 images are obtained in almost all routine 
MRI protocols. Therefore, if the pseudo-CT or μ-map can be 
generated from the conventional T1- and/or T2-weighted MR 
images with sufficiently small PET quantification errors, the 
PET/MR imaging workflow can be considerably improved by 
eliminating the additional MR pulse sequences only required 
for PET AC with small diagnostic values.  

In particular, Nie et al. employed a three-dimensional (3D) 
fully convolutional neural network (FCN) that better preserves 
the neighborhood information in the predicted pseudo-CT than 
the conventional convolutional neural network (CNN), for the 
learning of end-to-end mappings from pelvic T1 MR images to 
their corresponding CT [40]. The mapping from an MRI patch 
with dimensions of 32 × 32 × 16 to a CT patch with dimensions 
of 24 × 24 × 12 was learned in this study using 6,000 patches 
sampled from 21 pairs of CT and MRI volumes. Moreover, an 
adversarial training strategy was demonstrated for the training 
of the FCN, which allowed for a more accurate and robust 
synthesis of the pseudo-CT, and the loss function based on the 
image-gradient-difference alleviated the blurriness of the 
pseudo-CT [39]. Alternatively, the U-net architecture [216], 
which is widely used in medical image segmentation and other 
image-to-image translation tasks [202, 205, 217], was adopted 
for the conversion of a 2D T1 MRI slice to its corresponding 
2D CT (2D slice-to-slice mapping) [42]. In this study, the 
trained network using 2,400 slices collected from 15 training 
subjects provided a significantly higher accuracy than the atlas-
based method under evaluation using three different metrics 
computed between the original and synthetic head CTs (voxel-
wise mean absolute error, mean squared error, and Pearson 
correlation in pixel intensity). Bradshaw et al. used T2 and T1  
LAVA Flex MR images as inputs to a deep network that 
generates a four-class μ-map for pelvic PET/MRI studies [43]. 
The network used in this study has two 3D CNN pathways for 
the patch-based learning of MRI-to-CT translation. The two 
parallel CNN pathways trained simultaneously and then 

 
Fig. 18. Two parallel 3D CNN pathways for multi-scale patch-based learning of MRI-to-CT translation. (Reprint from [43] 
according to the publisher’s open access policy) 
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combined via fully connected layers handled different receptive 
fields relative to the input image, thus allowing for multi-scale 
processing. This is necessary for the efficient utilization of local 
and contextual information, which is useful for a better 
understanding of complex anatomy of the human body (Fig. 
18) [218]. Although several errors were observed in the four-
class μ-map generated by the network, e.g., discontinuous bone 
segments and misplaced bone, they were found to have a 
negligible impact on the corrected PET images (Fig. 19).    

Unlike CT, the same MRI pulse sequence can yield different 
image intensities and contrasts depending on the magnet field 
strength and scanner type [42]. Liu et al. addressed this major 
technical issue in DL-based MRI-to-CT translation [41]. In this 
study, a convolutional auto-encoder (CAE) network that 
learned MRI-to-CT mapping based on T1-weighted MR 
images obtained using a 1.5-T MR scanner was applied to data 
obtained at 3.0-T MR scanner with a T1 pulse sequence. It 
should be noted that the CAE that learned the translation rule 
from the 1.5-T MR exhibited a remarkable performance for 3.0-
T images. In addition, the CAE network yielded more accurate 
results to other conventional MR-based AC methods in brain 
18F-FDG PET/MRI studies (Dixon- and atlas-based) with 
respect to the similarity of the μ-map with CT-based map, and 
the accuracy of the attenuation-corrected PET activity (Fig. 20).  
  

B. Non-diagnostic MRI to Pseudo-CT 

It has been demonstrated that DL approaches are useful for 
the improvement of the generation of μ-maps from UTE, ZTE, 

and Dixon MRIs currently used in clinical PET/MRI systems 
for AC [34-37]. Moreover, the DL is an effective method for 
the integration of multiparametric information provided by 
different MR sequences, for the generation of more accurate μ-
maps. The use of PET/MRI specific MR pulse sequences as 
input data to the deep neural network would be more effective 
than the use of conventional T1- and T2-weighted MRI inputs 
for μ-map generation, given that they were designed to allow 
for better bone delineation or water/fat segmentation. Jang et al. 
trained a convolutional encoder-decoder (CED) network that  
was pre-trained with T1-weighted MR images to yield air, soft 
tissue, and bone labels from UTE image inputs [37]. For the 
generation of pseudo-CT images, the tissue labels estimated by 
the CED network were refined by the application of a 

 
Fig. 19. Negligible impact of small errors in the pseudo-CT 
generation on the corrected PET images: (a) pseudo-CT 
generated using CNNs, (b) corresponding T2 MRI, (c) 
corrected PET images using pseudo-CT, and (d) corrected 
PET images using ground truth CT. (Reprint from [43] 
according to the publisher’s open access policy) 
 

 
Fig. 20. Feasibility study of applying MRI-to-CT translation 
rule learned from 1.5-T MR images to 3.0-T. (a) Pipeline for 
pseudo-CT generation and PET reconstruction. (b) The 
superior performance of DL-based AC (deepMRAC) to 
Dixon MRI-based (System MRAC-1) and atlas-based 
(System MRAC-2) AC. (Reprint from [41] with permission; 
© 2018 RSNA)    



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TRPMS.2020.3009269, IEEE
Transactions on Radiation and Plasma Medical Sciences

IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. XX, NO. XX, XXX 2020 
 

15 

conditional random field-based correction [219], and then 
combined with fat and water images generated using a dual-
echo ramped hybrid encoding (dRHE) pulse sequence that 
allows for UTE, fat, and water images to be obtained with a 
short scan time (35 s). In brain PET/MRI studies using 18F-FDG, 
the DL-based approach outperformed the vendor’s soft-tissue-
only and the atlas-based ACs, in addition to the previous 
approach with dRHE acquisition and histogram-based image 
segmentation. Alternatively, a U-net based network was trained 
by Ladefoged et al. to yield pseudo-CT from UTE images [36]. 
In this approach, 16 neighboring slices were employed for each 
of the two echo images obtained using echo times of 0.07 ms 
and 2.46 ms, and the R2*-map derived from the echo images 
were used as inputs to the 3D U-net. In the O-(2-18F-
fluoroethyl)-L-tyrosine (18F-FET) brain PET/MRI studies, the 
DL-based method allowed for a more robust AC than the 
RESOLUTE method, which was previously proposed (Fig. 21) 

[124].  
The DL-based approaches improved the AC in pelvic 

PET/MRI studies. Leynes et al. demonstrated the high 
efficiency of DL-based information integration provided by 
multiparametric MR pulse sequences for PET AC in pelvic 
PET/MRI [35]. The patch-based learning of a CNN based on 

the U-net architecture was conducted using a bias-corrected and 
soft-tissue-normalized proton-density ZTE image, Dixon 
fractional fat image, and Dixon fractional water image as inputs. 
Fig. 22 presents the output images (ZeDD-CT) from the deep 
neural network, which can depict bone structures and soft 
tissues without the application of segmentation or other image 
processing, with the exception for the bias correction and soft-
tissue normalization in ZTE images. For the evaluation of the 
trained network on 30 bone lesions and 60 soft-tissue lesions in 
pelvic 18F-FDG and 68Ga-PSMA-11 PET/MRI studies, the error 
in PET quantification was reduced by a factor of 4 in bone 
lesions and by a factor of 1.5 in soft-tissue lesions (the root-
mean-squared error by DL was 2.68% and 4.07% in bone and 
soft tissue, respectively). Moreover, Torrado-Carvajal et al. 
investigated the feasibility of only using the Dixon images as 
inputs to the deep neural network for AC in pelvic PET/MRI 

[34]. In this study, four 2D slices (water, fat, in-phase, and out-
of-phase) of Dixon-VIBE MR images were provided to a CNN 
as inputs, to yield corresponding pseudo-CT slices (Fig. 23). 
The DL approach resulted in a decrease in the PET 

 
Fig. 21. DL-based pseudo-CT generation from UTE MRI: (a) 
ground truth CT, (b) UTE only, (c) UTE and DL, (d) 
subtraction of (a) from (b), and (e) subtraction of (a) from (c). 
(Reprint from [36] according to the publisher’s open access 
policy) 
 

 
Fig. 22. DL-based integration of multiparametric MR 
information to obtain pseudo-CT (ZeDD-CT) for pelvic 
PET/MRI: network structure and comparison with ground 
truth CT. (Reprint from [35] with permission; © 2018 
SNMMI) 
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quantification error in bone tissue by a factor of 6.75, relative 
to conventional Dixon-based AC. The variability in the error 
was reduced by a factor 3.5, which indicates that the DL-based 
method yields a more precise PET quantification. This 
approach has the advantages of a shorter MR scan time than that 
obtained with the ZTE and Dixon combination as inputs, given 
that only the standard Dixon-VIBE images are used, thus 
allowing for the retrospective processing of already obtained 
PET/MRI data with only Dixon-VIBE sequence for AC.  

IX. DEEP LEARNING: EMISSION-ONLY APPROACHES 

The PET AC based only on the emission PET data and deep 
neural network with no anatomical image input is more 
challenging than previously described anatomical image-based 
approaches. However, the methods that are only dependent on 
the emission PET have several advantages over the anatomical 
image-based approaches. When the neural networks are trained 
for AC, these approaches are not subject to the errors due to the 
different positioning and organ displacement during the scan. 
Moreover, they can be applied to PET/CT and standalone PET 
data in addition to PET/MRI.  
 

A. NAC PET to Pseudo CT 

One of these emission-only approaches is utilizing NAC PET 
images as input to generate pseudo-CT [30, 31, 33] or 
attenuation-corrected PET images [29, 32]. Liu et al. trained a 
CAE modified to have a U-net-like structure through the 
addition of symmetrical short connections between encoding 
and decoding stages to generate pseudo-CT images from NAC 
PET by using 100 18F-FDG brain PET/CT datasets [30]. The 
average absolute ROI-level error in the reconstructed PET 
images of the 28 testing subjects was less than 3% in the 21 
brain regions evaluated. The error in pseudo-CT generation due 
to head movement between PET and CT scans was also  
mitigated by applying this emission-only approach (Fig. 24). In 
addition, the missing parts of the skull could be predicted by the 
network in pseudo-CT, although no anatomical information 
was provided to the network (Fig. 25). Armanious et al. also 

 
Fig. 23. DL-based pseudo-CT generation from Dixon MRI 
(DIVIDE: Dixon-ViBE Deep Learning): (a) μ-maps and (b) 
PET images. (Reprint from [34] with permission; © 2019 
SNMMI) 
 

 
Fig. 24. Robustness of DL-based emission-only pseudo-CT 
generation to head movement between CT and PET scans. 
The red arrow indicates a noticeable movement. (Reprint 
from [30] according to the publisher’s open access policy) 
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demonstrated the feasibility of generating pseudo-CT from 
NAC 18F-FDG brain PET images for which they used 
generative adversarial networks (GANs) trained with 50 
PET/CT datasets [33]. To translate 2D NAC PET slices into 
corresponding pseudo-CT slices, they utilized the conditional 
GAN framework. In this framework, a generator network 
converts NAC PET into pseudo-CT, and a discriminator 
network distinguishes the pseudo-CT from the corresponding 
ground truth CT. Both these networks were simultaneously 
trained. No differences in diagnostic image information were 
observed between PET images corrected for attenuation using 
ground truth and pseudo-CT when the clinical evaluation was 
conducted on 20 datasets of various brain disorders. The 
absolute SUV error over all the brain regions was less than 5%. 
To generate pseudo-CT from NAC PET for whole-body PET 
studies, Dong et al. utilized a cycle-consistent GAN 
(CycleGAN) framework (Fig. 26) [31]. This method 
simultaneously learned targeted transformation from NAC PET 
to pseudo-CT and its inverse transformation using 3D patches 
extracted from 80 whole-body oncologic 18F-FDG PET/CT 
studies. In the CycleGAN framework, a self-attention U-net 
architecture, in which attention gates are integrated into a 
standard U-net architecture for better identification of semantic 

contextual information and mitigation of noise disturbance, was 
used as a generator. In addition, a fully convolutional network 
was used as a discriminator in the CycleGAN framework. A 
validation study on 39 independent patients showed that the 
mean absolute error between pseudo-CT and ground truth CT 
was less than 110 HU. The mean error and normalized mean 
squared error in the PET quantification of the brain, heart, left 
kidney, right kidney liver, and lesion ranged fromௗ−1.06% to 
3.57% and 0.43% to 1.80%, respectively. However, the errors 
were large in the lung, mainly owing to tissue heterogeneity, 
and no evaluation results on bone lesions were reported.  

 

B. NAC PET to Corrected PET 

The generation of attenuation-corrected PET images directly 
from NAC PET images can prevent errors due to misalignment 
and misregistration between different modality images while 
training and testing the networks. The processing time is also 
shorter for PET AC because additional image reconstruction is 
not necessary. A deep CAE was utilized by Shiri et al. for the 
direct transition of 18F-FDG brain PET images [29]. Their 
results demonstrated a high peak signal-to-noise ratio 
(39.2±3.65) and structural similarity index metric (0.989±0.006) 
between the predicted and ground truth attenuation-corrected 
PET images, leading to low mean relative error in SUVmean 
(0.02%) and SUVmax (-3.87%) quantification. The same 
approach was also used for the AC in whole-body 18F-FDG 
PET images by Dong et al. (Fig. 27) [32]. This study was 
conducted using a 3D patch-based CycleGAN framework, and 
the average mean error and normalized mean square error 
between attenuation-corrected PET images by using the 
CycleGAN framework and CT-based AC were 0.62% and 0.72% 
for whole-body PET. The performance of the CycleGAN 
framework was better than that of the U-net architecture and 
GAN. Although this direct conversion approach was feasible in 
these initial studies, it should be noted that the DL error in this 
approach directly leads to PET quantification error in the image 
space.  
 

 
Fig. 25. Prediction of missing parts in the skull by DL-based 
pseudo-CT generation from NAC PET. (Reprint from [30] 
according to the publisher’s open access policy) 
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C. Improved Simultaneous Reconstruction 

Another emission-only approach is improving the accuracy 
of simultaneously reconstructed activity and μ-maps by using 
DL [25-28, 220, 221]. As previously mentioned, joint emission 
and transmission estimation algorithms augmented by accurate 
TOF information allow the simultaneous reconstruction of 
activity image and μ-map (or ACF) [173-180]. The μ-map 
generated by applying the MLAA algorithm to uncorrected 
emission PET data is directly related to the attenuation 
coefficient of tissues for 511 keV annihilation photons. In 
addition, the MLACF provides an ACF that contains 
fundamentally the same information. However, the quality and 
accuracy of these joint estimation algorithms are not 
sufficiently good for clinical routine use mainly because of the 
limited timing resolution of current PET scanners. In addition, 
the simultaneous reconstruction algorithms require a refined 
calibration of the TOF PET system and improved modeling of 
the PET acquisition physics [222]. 

To overcome the limitations of current simultaneous 
reconstruction algorithms, Hwang et al. proposed a DL-based 
enhancing method and verified its feasibility by using clinical 
brain PET/CT datasets [26]. In this initial study, three different 
CNN architectures (CAE, U-net, hybrid of CAE and U-net) 

 
Fig. 26. DL-based pseudo-CT generation from NAC whole-body PET images. (a) Ground truth CT. (b) Pseudo-CT from NAC 
PET. (c) Corrected PET using ground truth CT. (d) Corrected PET using pseudo-CT. (Reprint from [31] with permission; © 
2019 IPEM) 
 

 
Fig. 27. DL-based direct generation of attenuation-corrected 
PET images from NAC PET. (a) CT AC. (b) DL-based 
approach. (c) Difference. (Reprint from [32] with 
permission; © 2020 IPEM) 
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were designed and trained using 2D slices of MLAA activity 
image and μ-map to learn CT-based μ-map (Fig. 28). To  
demonstrate the feasibility of the proposed method, the authors 
chose 18F-fluorinated-N-3-fluoropropyl-2-β-carboxymethoxy-
3-β-(4-iodophenyl)nortropane (18F-FP-CIT) brain PET/CT 
dataset, one of the most challenging datasets for simultaneous 
reconstruction due to severe crosstalk between activity and 
attenuation and the high background noise in  the non-specific 
binding brain regions. The networks were trained with 800,000 
slices that were obtained by applying augmentation methods 
(rotation and flipping) to 32 patients’ datasets. These networks 
remarkably reduced the noise and crosstalk in the MLAA-
generated μ-maps. Among the three network architectures, the 
hybrid network of CAE and U-net yielded the most similar μ-
maps to CT-based μ-maps: the Dice similarity coefficient 
between CT-based and DL-based μ-maps in the whole head was 
0.79 in the bone and 0.72 in air cavities. The error in the 
regional activity and binding ratio quantification was only 
approximately 5% when the hybrid network was applied.  

This DL approach, which enhanced the accuracy of 
simultaneously reconstructed μ-map, was further improved by 
applying 3D patch-based learning. Choi et al. compared the 
performance of 2D slice-to-slice and 3D patch-to-patch 
transition strategies to improve the MLAA μ-map [220]. In this 
study, four different U-net models (2D, 2D residual, 3D, and 
3D residual U-nets) were trained and tested with 18F-
florbetaben brain PET/CT scan data of 78 subjects suspected 
with Alzheimer’s disease. The results showed that 3D patch-
based learning was superior to 2D slice-based learning: Dice 
similarity coefficient with CT-based μ-maps for bone in the 
head region was 0.67 and 0.80 in the 2D U-net and 3D U-net, 
respectively. In addition, the 3D patch-based learning allowed 
better continuity of μ-map in the axial direction. The residual 
learning was only useful for 2D slice-based learning. The 3D 
patch-based learning with U-net has also improved the MLAA 

μ-map and PET quantification in the whole-body 18F-FDG PET 
studies (Fig. 29) [28]. In his study, which was conducted with 
PET/CT dataset of 100 patients, a 3D U-net trained with 1.3 
million patches derived from 60 whole-body PET/CT dataset 
improved the Dice similarity in bone tissues from 0.36 (original 
MLAA) to 0.77 (DL-enhanced MLAA); moreover, the standard 
uptake value (SUV) correlation (R2) in suspicious bone lesions 
improved from 0.91 (original MLAA) to 0.99 (DL-enhanced 
MLAA). The authors also showed the strong potential of 
improved AC by this method in whole-body PET/MRI studies: 
relative to the four-segment map derived from CT, the deep 
leaning-enhanced MLAA showed considerably higher peak 
signal-to-noise ratio in attenuation-corrected activity map (60.4 
vs. 49.9) and lower SUV quantification error in vertebral lesions 
(−2.2% vs. −9.4%).  

Another approach to improve the DL-enhanced MLAA is 
applying acquisition physics-based additional constraints in the 
projection domain of the μ-map. Shi et al. enforced the 
similarity in the projection domain between the predicted and 
CT-based μ-maps based on the fact that the line integral of the 
attenuation coefficient along the LOR is used for AC instead of 
attenuation coefficient itself [25]. By adding the loss function 
that measures the line-integral difference between predicted and 
CT-based patches (projection domain) to the loss function that 
measures image intensity and gradient differences (image 
domain), more accurate μ-maps and corrected PET images 
could be obtained. This study is a good example demonstrating 
how a better understanding of PET acquisition physics and 
correction algorithms can result in better DL performance for 
PET AC.  

 
Fig. 28. Improving the accuracy of simultaneously 
reconstructed activity and attenuation maps using DL. 
(Reprint from [26] with permission; © 2018 SNMMI) 
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The advantages of emission-only approaches were better 
demonstrated by the deep leaning-enhanced MLAA. Because 
attenuation coefficients are estimated from the uncorrected 
emission PET data acquired with mono-energetic 511-keV 
annihilation photons, metal artifacts caused by the low-energy 
photon starving in x-ray CT were not observed in 
simultaneously estimated μ-maps (Fig. 30); this enables more 
accurate PET AC in patients with metallic implants [27]. In 
addition, there is no time discrepancy between the activity and 
attenuation information that is derived only from the emission 
measurement; this allows for better spatio-temporal correlation 

between activity images and μ-maps as well as lower error 
associated with their spatio-temporal mismatch. Fig. 31 shows 
how deep-learning enhanced MLAA mitigates the arm position 
mismatch artifact that is frequently observed in PET and CT 
scans [25]. In addition, the difference between the CT-based 
and DL-enhanced MLAA-based attenuation-corrected whole-
body PET images was largest in lung boundary and upper liver 
dome, which are most vulnerable to the position mismatch 

 
Fig. 29. Improved MLAA μ-maps by DL in whole-body 18F-FDG PET studies. (Reprinted from [28] with permission; © 2019 
SNMMI) 
 

 
Fig. 30. Absence of metal artifacts in the μ-map derived from 
emission data using MLAA and DL. 
 

 
 
Fig. 31. Mitigation of arm position mismatch artifact using 
MLAA and DL: (a) CT-based μ-map, (b)  μ-map derived 
from emission data using MLAA and DL, (c) corrected PET 
using  CT-based μ-map, and (d) corrected PET using MLAA 
and DL (Courtesy of Yihuan Lu at Yale University). 
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artifacts caused by respiratory motion in PET/CT studies [28]. 
This observation indicates the reduction of the mismatch 
artifacts by the MLAA and DL. This approach also allowed a 
further improvement in the position-mismatch artifact 
reduction by enabling the respiratory phase-matched AC in 
PET/CT [221]. In this study, MLAA reconstruction was applied 
to every respiratory-gated emission PET frame that was 
generated using a data-driven gating method, and the gated μ-
maps were enhanced by the DL and used for deriving motion 
vector fields between the gating phases; these vector fields were 
used to generate motion-free phase-matched attenuation-
corrected PET images.   

 
X. DEEP LEARNING: FUTURE DIRECTION 

Previous studies reviewed in this paper have shown that DL 
is a useful approach to improve accuracy of AC in PET/MRI. 
Moreover, the DL-based approaches that do not require MRI 
input can be utilized for various types of artifact reduction in  
AC for PET/CT. However, such promising results were mostly 
obtained from the regional 18F-FDG PET scans on the brain and 
pelvic region, where the large-sized bone structures with 
relatively simple shapes, such as skull, hip bones, and femur, 
are dominant attenuating materials. In addition, photon 

counting statistics in the regional PET scans are better than 
multi-bed whole-body scans. Therefore, further investigations  
are required to prove the feasibility of proposed approaches in 
the application to whole-body PET studies with lower counting 
statistics and radiotracers other than 18F-FDG.  

A major obstacle in whole-body PET/MRI AC investigations 
is the limited availability of a large number of registered CT and 
MRI pairs and the lack of accuracy of nonlinear registration 
between them. A promising approach to overcome this 
challenge is the use of CycleGAN that employs cycle 
consistency loss as an indirect structural similarity between the 
input and synthesized images [223-225]. Further evaluation of 
this method for PET/MRI AC will be necessary.  

The pros and cons of different DL-based AC methods and 
neural network models used for them are summarized in Table 
II and III. However, it is currently difficult to identify the 
approaches and algorithms that can be employed for the best 
performance of DL-based AC method for PET/CT and 
PET/MRI because each group uses different performance 
matrices, and there is no available standard reference dataset 
and processing pipeline to compare the performance of each 
method. The research community should consider the 
establishment of standard dataset and evaluation framework for 

TABLE ⅠI 
Pros and cons of DL-based approaches for PET AC 

Approach Pros Cons 

Diagnostic MRI 
to Pseudo-CT 

- No additional MR pulse sequences for AC 

- Subject to MRI artifacts and PET/MRI 

misalignment error  

- Worse physical relevance 

Non-diagnostic 
MRI  
to Pseudo-CT 

- Better physical relevance 

- Better bone delineation and water/fat separation  

- Subject to MRI artifacts and PET/MRI 

misalignment error 

- Additional MR pulse sequences for AC 

- PET/MRI only 

NAC PET  
to Pseudo CT 

- No anatomical images and misalignment error  

- Stand-alone PET applicability 

- Easy implementation 

- Limited bone and air cavity delineation  

- Large error in lung 

NAC PET  
to Corrected 
PET 

- No anatomical images and misalignment error  

- Stand-alone PET applicability 

- Easy implementation and shorter processing time  

- Limited bone and air cavity delineation 

- Non-availability of μ-maps  

- Direct influence of DL error on PET 

quantification 

Improved 
Simultaneous 
Reconstruction 

- No anatomical images and misalignment error  

- Stand-alone PET applicability 

- Better physical relevance 

- Additional image reconstruction 

- Necessity of time-of-flight information  

- Low resolution of μ-maps 
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this important but challenging task in nuclear medicine [20]. In 
addition, the investigators should further consider identifying 
the best input to the deep neural networks, to derive the most 
accurate and robust attenuation-corrected PET images. In this 
respect, synergistic combination of different approaches to 
achieve the best outcome should be considered. Most of the 
previous investigations have used only a single type of dataset 
as an input to the deep neural networks. However, using multi-
scale, multi-sequence, and multi-parametric inputs to the 
networks seems to be a useful approach to enhance the 
performance of DL-based AC methods [26, 28, 35, 43]. 
Moreover, an overlooked aspect, which has not been considered 
as an input to the networks, is the distribution of scattered 
photons that is closely related with μ-map. Given that the 
attenuation in PET is mainly due to Compton scattering and 
several studies are showing the usefulness of the scattered 
coincidence measurements for improving the PET AC [226-
229], the DL-based scatter-to-attenuation approach looks 
promising.  

AC is also important for SPECT because of the increasing 
use of theranostic agents that emit single gamma ray photons [5, 
230-232]. Accurate absorbed radiation dose estimation at voxel 
and organ level is only possible with quantitively accurate 
SPECT data that is corrected for attenuation, scatter, and 
collimator-detector response. In addition, the use of quantitative 
SPECT for diagnostic purposes is increasing [233]. However, 
the SPECT/CT that allows accurate SPECT quantification is 
not widely available yet. A few emission-only approaches used 
for DL-based PET AC will be potentially useful for SPECT AC. 
Further development of a unique approach to SPECT AC will 
be also necessary. 
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