
Physics in Medicine & Biology
     

ACCEPTED MANUSCRIPT

Anatomy-guided PET reconstruction using l1 bowsher prior

To cite this article before publication: Seung Kwan Kang et al 2021 Phys. Med. Biol. in press https://doi.org/10.1088/1361-6560/abf2f7

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2021 Institute of Physics and Engineering in Medicine.

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 147.47.228.204 on 19/04/2021 at 16:35

https://doi.org/10.1088/1361-6560/abf2f7
https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1361-6560/abf2f7


IOP Publishing Phys. Med. Biol. 

Phys. Med. Biol. XX (XXXX) XXXXXX  https://doi.org/XXXX/XXXX 

xxxx-xxxx/xx/xxxxxx 1 ©  xxxx IOP Publishing Ltd 
 

Anatomy-Guided PET Reconstruction Using 𝒍𝟏 

Bowsher Prior 

Seung Kwan Kang 1,2 and Jae Sung Lee1,2,3,4 

1 Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Korea 
2 Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, 

Korea 
3 Institute of Radiation Medicine, Medical Research Center, Seoul National University College of 

Medicine, Seoul 03080, Korea 
4 Brightonix Imaging Inc., Seoul 03080, Korea 

 

E-mail: jaes@snu.ac.kr 

 

Received xxxxxx 

Accepted for publication xxxxxx 

Published xxxxxx 

Abstract 

Advances in simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) technology have led to an 

active investigation of the anatomy-guided regularized PET image reconstruction algorithm based on MR images. Among the 

various priors proposed for anatomy-guided regularized PET image reconstruction, Bowsher’s method based on second-order 

smoothing priors sometimes suffers from over-smoothing of detailed structures. Therefore, in this study, we propose a 

Bowsher prior based on the 𝑙1-norm and an iteratively reweighting scheme to overcome the limitation of the original 

Bowsher method. In addition, we have derived a closed solution for iterative image reconstruction based on this non-smooth 

prior. A comparison study between the original 𝑙2 and proposed 𝑙1 Bowsher priors was conducted using computer simulation 

and real human data. In the simulation and real data application, small lesions with abnormal PET uptake were better 

detected by the proposed 𝑙1 Bowsher prior methods than the original Bowsher prior. The original 𝑙2 Bowsher leads to a 

decreased PET intensity in small lesions when there is no clear separation between the lesions and surrounding tissue in the 

anatomical prior. However, the proposed 𝑙1 Bowsher prior methods showed better contrast between the tumors and 

surrounding tissues owing to the intrinsic edge-preserving property of the prior which is attributed to the sparseness induced 

by 𝑙1-norm, especially in the iterative reweighting scheme. Besides, the proposed methods demonstrated lower bias and less 

hyper-parameter dependency on PET intensity estimation in the regions with matched anatomical boundaries in PET and 

MRI. Therefore, these methods will be useful for improving the PET image quality based on the anatomical side information. 

Keywords: image reconstruction, positron emission tomography, anatomical prior, regularization 

 

1. Introduction 

Positron emission tomography (PET) is a medical imaging 

device that is highly sensitive in identifying functional and 

molecular abnormalities in patients with various diseases. 

However, PET has relatively poor spatial resolution and 

higher noise levels compared to anatomical imaging 

modalities, such as computed tomography (CT) and magnetic 

resonance imaging (MRI). To improve the image quality and 

quantitative accuracy of PET, various iterative reconstruction 

algorithms that account for the noise properties of measured 

data have been widely investigated and adopted (Shepp and 

Vardi 1982, Lange and Carson 1984, Qi and Leahy 2006). 

However, the formulation of optimization problems based on 

Poisson statistics for iterative PET image reconstruction is 

generally ill-posed at high noise levels (Louis and Natterer 

1983, Tikhonov 1963, Gourion and Noll 2002).  

To mitigate such problems, we use maximum a posteriori 

(MAP) reconstruction algorithms, also known as penalized 

likelihood reconstruction methods, that stabilize the solution 
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by incorporating prior information into the formulation of the 

optimization problem (Artzy et al. 1979, Hebert and Leahy 

1989, Kaufman 1993, Fessler and Hero 1995, Qi and Leahy 

2000). However, smoothing priors (e.g., the quadratic prior) 

used for reducing noise in reconstructed images also eliminate 

some essential high-frequency features such as edge and small 

lesions. To preserve these features, we can use edge-

preserving priors, such as the non-local means prior (Wang 

and Qi 2012). Alternatively, anatomical information provided 

by CT or MRI can be utilized as a prior (anatomy-guided 

regularized PET image reconstruction) (Bowsher et al. 1996, 

Vunckx et al. 2012, Bai et al. 2013, Tang and Rahmim 2015, 

Ehrhardt et al. 2016, Novosad and Reader 2016, Mehranian et 

al. 2017, Schramm et al. 2018, Knoll et al. 2017).  

In recent years, advances in simultaneous PET/MRI 

technology (Judenhofer et al. 2008, Yoon et al. 2012, Delso et 

al. 2011, Ko et al. 2016, Levin et al. 2016) have led to an 

active investigation of such anatomy-guided regularized PET 

image reconstruction algorithms based on MR images. MRI 

with higher soft-tissue contrast compared to CT would be a 

useful anatomic prior, particularly for brain and head/neck 

regions. Either raw MR images or segmentation outcomes can 

be used as the priors for PET image reconstruction (Baete et 

al. 2004a, Baete et al. 2004b, Nuyts et al. 2005, Goffin et al. 

2010, Hutchcroft et al. 2016). In this study, we focused on the 

former method because the segmentation-based method is 

vulnerable to segmentation error.  

Among the various priors proposed for anatomy-guided 

regularized PET image reconstruction, Bowsher’s method is 

one of the best performing anatomical priors (Bowsher et al. 

2004, Schramm et al. 2018). However, the original Bowsher’s 

method that is based on 𝑙2-norm prior sometimes suffers from 

over-smoothing of detailed structures. Therefore, in this study, 

we propose a Bowsher prior based on the 𝑙1-norm to overcome 

the limitation of the original Bowsher method. An interesting 

property of newly derived prior is that it induces sparseness of 

the image like total-variation (TV) prior (Chambolle et al. 

2010, Esser 2009). Accordingly, we could improve the 

performance of the proposed prior by applying an iterative 

reweighting scheme introduced in (Candes et al. 2008). A 

modified proximal gradient algorithm was used to solve the 

optimization problem of Poisson log-likelihood and non-

smooth prior. Computer simulation studies under different 

noise conditions were conducted to compare the performance 

of the original and proposed 𝑙1  Bowsher priors. We also 

analyzed both priors using clinical [18F]FDG PET images. 

2. Methods 

2.1 PET Data Model 

The Poisson log-likelihood model is used for PET image 

reconstruction to account for the statistical properties of PET 

image acquisition (Lange and Carson 1984, Qi and Leahy 

2006). However, the maximum log-likelihood solution for 

unknown images usually yields noisy results because the 

problem is fundamentally ill-posed. Thus, regularization is 

considered to recover better images by imposing some 

appropriate assumptions. The penalized negative log-

likelihood estimate of the unknown image 𝒙 is expressed as 

 

argmin
𝒙≥0

∑𝑦̂𝑖(𝒙) − 𝒚𝑖 log 𝑦̂𝑖(𝒙) + 𝛽𝑅(𝒙)

𝑖

 (1) 

 

where 𝑦𝑖 is the observed data for the ith line of response, 𝑅(∙) 

is the penalty function, β is a weighting parameter of the 

penalty function, and 𝑦̂𝑖(∙)  is a forward projection of the 

image to the i-th line of response. The expected count 

distribution 𝑦̂𝑖(𝒙) for image 𝒙 is expressed as 𝑦̂𝑖(𝒙) = 𝐴𝒙 +

𝒔 , where 𝐴  is a system matrix and 𝑠  denotes the expected 

distribution of random and scatter events. We can provide 

anatomical information available in the MR image to the 

penalty function 𝑅(∙) . As mentioned earlier, one of the 

popular choices for the penalty function R(∙) is the Bowsher 

prior (Bowsher et al. 2004), which will be discussed in the 

following sections. 

2.2 Original Bowsher Prior 

The original Bowsher prior is expressed as (Bowsher et al. 

2004, Schramm et al. 2018) 

 

𝑅𝑙2(𝒙|𝒛) = ∑ ∑ 𝑤𝑙𝑗(𝒙𝑙 − 𝒙𝑗)
2

𝑙∈𝑁𝑗𝑗

 

, (2) 

𝑤𝑙𝑗 = {

1                 ∀𝑙 ∈ 𝑁𝑗 , 𝑖𝑓  ∃z𝑘 ∈ 𝐵𝑗  

      𝑤ℎ𝑒𝑟𝑒 |𝑧𝑗 − 𝑧𝑙| ≤ |𝑧𝑗 − 𝑧𝑘| 
0                                                 else

 (3) 

 

where 𝒛 is a prior MR image, 𝒛𝑗  is a j-th voxel of the MR 

image and 𝑁𝑗  is the neighbor voxel of the j-th voxel. The 

weight 𝑤∙𝑗 uses the difference between the center of the MR 

image patch and its surrounding voxels to determine the 

smoothness in the homogenous region. If the difference is 

large, the boundary of the given image is preserved. 𝐵𝑗  

consists of the b most similar voxels in the anatomical image 

around the j-th voxel. In the previous study, authors showed 

that the modifying quadratic term in (2) to relative difference 

yielded better performance (Vunckx and Nuyts 2010, Vunckx 

et al. 2012, Schramm et al. 2018). 
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𝑅𝑙2
𝑟𝑒𝑙 =∑∑ 𝑤𝑙𝑗

(𝒙𝑙 − 𝒙𝑗)
2

𝒙𝑙 + 𝒙𝑗
𝑙∈𝑁𝑗𝑗

 (4) 

 

To reconstruct the image using this prior, we utilized the 

asymmetric Bowsher prior and one-step-late algorithm 

developed in (Nuyts et al. 2002, Vunckx et al. 2012). The 

update of each voxel 𝒙𝑗
  is expressed as the following equation: 

 

𝒙𝑗
𝑛+1 = 𝒙𝑗

𝑛 + (
𝜕𝐿

𝜕𝒙𝑗
+

𝜕𝑅𝑙2
𝑟𝑒𝑙

𝜕𝒙𝑗
)/(

𝑎𝑗

𝒙𝑗
𝑛 −

𝜕2𝑅𝑙2
𝑟𝑒𝑙

𝜕𝒙𝑗
2 ), (5) 

 

where 𝐿 is the negative log-likelihood, and 𝑎𝑗 = ∑ 𝑎𝑖𝑗𝑗  is the 

sum of the system matrix. This original Bowsher prior is a 𝑙2-

norm prior; therefore, it sometimes suffers from over-

smoothing of detailed structures.  

2.3 Proposed  𝑙1 Bowsher Prior 

Our proposed 𝑙1 Bowsher prior is defined as follows: 

 

𝑅𝑙1(𝒙|𝒛) =∑∑ 𝑤𝑙𝑗|𝒙𝑙 − 𝒙𝑗|

𝑙∈𝑁𝑗𝑗

 

. 
(6) 

 

Instead of using a squared function between the center voxel 

and its neighbors, the 𝑙1 -norm was exploited. This prior is 

convex but not smooth. Therefore, we devised a modified 

proximal gradient algorithm because the reconstruction 

scheme from the original Bowsher prior was not applicable. 

At first, the EM update equation can also be described as 

(Sangtae and Fessler 2003) 

 

𝒙𝑛+1 = 𝒙𝑛 − 𝐷(𝒙𝑛)∇𝐿(𝒙𝑛), (7) 

 

where 𝐷(𝒙𝑛) = 𝑑𝑖𝑎𝑔(𝒙𝑛/𝐴𝑇𝟏 ), and 𝐴𝑇𝟏  is the 

backprojection of a vector whose elements are equal to 1. Thus, 

𝒙𝑛+1 is the solution of the following problem: 

 

aargmin𝒙 𝐿(𝒙
𝑛) +  ∇𝐿(𝒙𝑛)𝑇(𝒙 − 𝒙𝑛)

+
1

2
‖𝒙 − 𝒙𝑛‖𝐷(𝒙𝑛)−1

2  

(8) 

= argmin𝒙  
1

2
‖∇𝐿(𝒙𝑛)‖𝐷(𝒙𝑛)−1

2 + ∇𝐿(𝒙𝑛)𝑇(𝒙 − 𝒙𝑛)

+
1

2
𝐷‖𝒙 − 𝒙𝑛‖𝐷(𝒙𝑛)−1

2  

= argmin𝒙  
1

2
‖𝒙 − 𝒙𝑛 + 𝐷(𝒙𝑛)∇𝐿(𝒙𝑛) ‖𝐷(𝒙𝑛)−1

2 .. 

 

In the (8), the 𝐿(𝒙𝑛)  can be removed because it does not 

depend on 𝒙  and 1/2‖∇𝐿(𝒙𝑛)‖𝐷(𝒙𝑛)−1
2  can be inserted into 

the first equation for the same reason. This equation can be 

regarded as the second-order Taylor approximation of Poisson 

log-likelihood where the a Hessian is substituted for 𝐷(𝒙𝑛)−1. 

Consequently, we can rewrite the original problem (1) in the 

following approximated form after combining the proposed 

regularization term: 

 

argmin𝒙≥0
1

2
‖𝒙 − 𝒙𝑛+1‖𝐷(𝒙𝑛)−1

2 + 𝛽𝑅𝑙1(𝒙|𝒛). (9) 

 

This formula is the modified proximal mapping for a penalty 

function 𝑅𝑙1 , where 𝐷(𝒙𝑛)−1  plays the role of diagonal 

weighting. The proximal gradient algorithm is efficient when 

a closed expression of the proximal mapping is provided. We 

were able to determine the proximal mapping for the 

individual voxel 𝒙𝑗 by applying the subgradient optimality 

condition (Parikh and Boyd 2014) (see Figure 1.). 

 

0 ∈ ∂ (
1

2𝑑𝑗
(𝒙𝑗 − 𝒙𝑗

𝑛+1)
2
+ 𝛽 (∑ 𝑤𝑙𝑗|𝒙𝑙 − 𝒙𝑗|𝑙∈𝑁𝑗

+

∑ 𝑤𝑗𝑚|𝒙𝑗 − 𝒙𝑚|𝑚∈𝑁𝑗
))   

(10) 

 

The final term ∑ 𝑤𝑗𝑚|𝒙𝑗 − 𝒙𝑚|𝑚∈𝑁𝑗
 is included for the 

symmetricity of the proposed prior. If we remove this term, it 

becomes asymmetric 𝑙1  Bowsher prior. We used the 

asymmetric 𝑙1  Bowsher in this study. The solution of the 

subgradient is given by if we set 𝒙𝑖 ≠ 𝒙𝑗 for 𝑖, 𝑗 ∈ 𝑁𝑗 and 𝒙𝑖 <

𝒙𝑗 for ∀ 𝑖 < 𝑗: 
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∂ (∑ 𝑤𝑙𝑗|𝒙𝑙 − 𝒙𝑗|𝑙∈𝑁𝑗
) =

{
  
 

  
 
−∑ 𝑤𝑙𝑗𝑙∈𝑁𝑗

                                          if 𝒙𝑗 < 𝒙1

⋮
𝑤𝑖[−1,1] + ∑ 𝑤𝑙𝑗

𝑖−1
𝑙=1 − ∑ 𝑤𝑙𝑗

𝑛𝑙
𝑙=𝑖+1   if 𝒙𝑗 = 𝒙𝑖

∑ 𝑤𝑙𝑗
𝑖
𝑙=1 −∑ 𝑤𝑙𝑗

𝑛𝑙
𝑙=𝑖+1           if 𝒙𝑖 < 𝒙𝑗 < 𝒙𝑖+1

⋮
∑ 𝑤𝑙𝑗𝑙∈𝑁𝑗

                                             if 𝒙𝑗 > 𝒙𝑛𝑙

. 

(11) 

 

Rearranging (11) yields the following solution: 

 

prox𝑅𝑙1
𝐷(𝒙𝑛)−1(𝒙𝑗

𝑛+1|𝒛) =

{
 
 
 
 

 
 
 
 
𝒙𝑗
𝑛+1 + 𝑑𝑗𝛽 ∑ 𝑤𝑙𝑗𝑙∈𝑁𝑗

             if 𝒙𝑗
𝑛+1 ∈ 𝑆1

+

⋮
𝒙𝑖                                                  if 𝒙𝑗

𝑛+1 ∈ 𝑆𝑖
−

𝒙𝑗
𝑛+1 − 𝑑𝑗𝛽 ∑ 𝑤𝑙𝑗

𝑖
𝑙=1                                        

+𝑑𝑗𝛽 ∑ 𝑤𝑙𝑗
𝑛𝑙
𝑙=𝑖+1                    if 𝒙𝑗

𝑛+1 ∈ 𝑆𝑖
+ 

⋮
𝒙𝑗
𝑛+1 − 𝑑𝑗𝛽 ∑ 𝑤𝑙𝑗𝑙∈𝑁𝑗

           if  𝒙𝑗
𝑛+1 ∈ 𝑆𝑛𝑙

+

, 
(12) 

 

where 𝑛𝑙 is the number of elements in the set 𝑁𝑗, 2 ≤ 𝑖 ≤ 𝑛𝑙 −

1, and 

 

𝑆1
+ = {𝑢|𝑢 ≤ 𝒙1 − 𝑑𝑗𝛽 ∑ 𝑤𝑙𝑗𝑙∈𝑁𝑗

} 

⋮ 
(13) 

𝑆𝑖
−

= {𝑢|
𝒙𝑖 + 𝑑𝑗𝛽(∑ 𝑤𝑙𝑗

𝑖−1
𝑙=1 − ∑ 𝑤𝑙𝑗

𝑛𝑙
𝑙=𝑖+1 − 𝑤𝑙𝑖) < 𝑢

≤ 𝒙𝑖 + 𝑑𝑗𝛽(∑ 𝑤𝑙𝑗
𝑖−1
𝑙=1 − ∑ 𝑤𝑙𝑗

𝑛𝑙
𝑙=𝑖+1 +𝑤𝑙𝑖)

} 

𝑆𝑖
+ = {𝑢|

𝒙𝑖 + 𝑑𝑗𝛽(∑ 𝑤𝑙𝑗
𝑖
𝑙=1 − ∑ 𝑤𝑙𝑗

𝑛𝑙
𝑙=𝑖+1 ) <

𝑢 ≤ 𝒙𝑖+1 + 𝑑𝑗𝛽(∑ 𝑤𝑙𝑗
𝑖
𝑙=1 − ∑ 𝑤𝑙𝑗

𝑛𝑙
𝑙=𝑖+1 )

} 

⋮ 

𝑆𝑛𝑙
+ = {𝑢|𝑢 > 𝒙𝑛𝑙 + 𝑑𝑗𝛽 ∑ 𝑤𝑙𝑗𝑙∈𝑁𝑗

}. 

 

Note that 𝑆1
+ ∪ ⋯∪ 𝑆𝑖

− ∪ 𝑆𝑖
+ ∪⋯∪ 𝑆𝑛𝑙

+ = ℝ  and each 𝑆∙
∙  is 

disjoint sets. The example of proximal mapping is presented 

in Figure 1, and it is similar to the soft thresholding operator 

(Beck and Teboulle 2009b). Therefore, image reconstruction 

with the proposed 𝑙1 Bowsher prior is conducted by applying 

the EM update (8) followed by the modified proximal operator 

update (12). Both the original and proposed Bowsher prior 

reconstruction algorithms can be accelerated by replacing the 

EM update with the ordered subset (OS) algorithm. 

2.4 Iterative Reweighting 

Proposed 𝑙1  Bowsher prior (6) is similar to TV- 𝑙1 

regularization which is one of the sparsity-inducing methods 

(Chambolle et al. 2010, Esser 2009). Thus, we can apply the 

iterative reweighting method to further enforce the sparsity of 

the proposed 𝑙1  Bowhser prior (Candes et al. 2008). The 

modified prior is given by: 

 

𝑅𝑙1
𝐼𝑅(𝒙|𝒛) =∑∑𝑤𝑙𝑗

𝐼𝑅𝑤𝑙𝑗
 |𝒙𝑙 − 𝒙𝑗|

𝑙∈𝑁𝑗𝑗

 

, 
(14) 

𝑤𝑙𝑗
𝐼𝑅 =

1

𝑤𝑙𝑗
 |𝒙𝑙 − 𝒙𝑗| + 𝜖

, (15) 

 

where 𝜖 > 0  is the design parameter that controls the 

algorithm's stability, which yields relatively consistent results 

for its variation (Candes et al. 2008). If the 𝑤𝑙𝑗
 ≠ 0, the prior 

becomes 𝑙0-norm, the number of non-zero elements, leading 

to the sparsity of the boundary voxels. In our experiments, 𝜖 =

0.1 was used for both simulation and clinical datasets. For the 

optimization, the weights 𝑤𝑙𝑗  of proximal operator (12) at 

each iteration 𝑛 is modified to as in Candes et al.: 

 

𝑤𝑙𝑗
𝐼𝑅,𝑛 =

1

𝑤𝑙𝑗
  |𝒙𝑙

𝑛 − 𝒙𝑗
𝑛| + 𝜖

, (16) 

Figure 1. Example of the proposed proximal operator. 
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which means that the weight of the current iteration is 

calculated using the previous images. Accordingly, the 

optimization problem is not convex anymore because of the 

𝑙0 -norm, so the convergence to a global solution is not 

guaranteed. Therefore, the proper initial condition is important 

and we start this iteratively reweighting scheme after one 

iteration of OS algorithm. This approach did not cause 

convergence problems, at least in our experiments, which 

means that the found solution was not far from the global 

solution. 

2.5 Computer Simulations 

We generated the ground truth PET image based on the MR 

image and its segmentations obtained from BrainWeb 

(Cocosco et al. 1997).  The idea was divided into four regions: 

gray matter (GM), white matter and others (WM and so on), 

small tumor, and large tumor. We assigned image intensities 

of 0.5, 0.125, 0.75, and 1 to gray matter, white matter and 

others, small tumor and large tumor, respectively (Figure 2). 

Attenuation map was also generated from the ground truth 

image and a scatter map was acquired by filtering the 

projections with 50 mm Gaussian FHWM. Scatter fraction 

was 20%. Two different levels of Poisson noise were added to 

the projections assuming two different situations: 5 min 

acquisition (total 7.0 × 107 prompt counts) and 1 min 

acquisition (total 1.4× 107 prompt counts) using Siemens 

Biograph mMR system (Siemens Healthcare, Knoxville, TN), 

where the number of views in the sinogram was 168. To 

analyze the results statistically, 15 independent noise 

realizations are produced. We compared three different image 

reconstruction strategies: original 𝑙2  Bowsher prior with a 

relative difference, proposed 𝑙1  Bowsher prior and 𝑙1 

Bowsher prior with iterative reweighting. The initial 

conditions for all the compared algorithms were the output of 

the first iteration of OSEM. The OS algorithm had 21 subsets 

and the number of outer iterations was 6. The Bowsher prior 

was calculated in the nearest 80 voxels. Although the previous 

report showed the optimal number of selected voxels in the 

patch (b) was about 10 (Vunckx and Nuyts 2010, Vunckx et 

al. 2012), we also examined larger patch size (20). The 

regularization parameters for the original Bowsher prior were 

from 0.1×20 to 0.1×27 with logarithmic scale 2, and those for 

the proposed 𝑙1 Bowsher prior were 0.1×2 to 0.1×28 divided 

into the same logarithmic scale. Attenuation and scatter were 

corrected during image reconstruction, but spatial resolution 

modeling was not applied. 

2.6 Human Data 

The proposed method was applied to two different sets of 

human data acquired using the Siemens Biograph mMR 

system. One of them was obtained from the PET/MRI scan of 

a healthy volunteer (59 years old male) acquired 110 min after 

the injection of 192 MBq [18F]FDG. The PET scan duration 

was 10 min. A T1-weighted structural MRI was also acquired  

Algorithm 1. Modified proximal gradient with ordered subsets 

1:  input 𝒚 and 𝒛 

2:  initialize x 

3:  for 𝑛1 = 1…𝑛out do 

4:     for 𝑛2 = 1…𝑛subsets do 

5:        𝒙EM = 𝒙 − 𝐷(𝒙)𝛻𝐿𝑛2(𝒙) (ordinary EM using subsets) 

6:           for 𝑗 = 1…𝑛𝑗 do 

7:              𝒙𝑗,prox
EM = prox𝑅𝑙1

𝐷(𝒙𝒋)
−1

(𝒙𝑗
EM|𝒛) (proximal operator) 

8:           set 𝒙 = 𝒙prox
EM  

9:        end 

10:   end 

11: return 

Figure 2. Simulated brain phantoms. (a) MRI and (b) PET (c) 
OSEM reconstruction with low-level noise and 5 mm Gaussian 

filter (total 7.0×107 prompt counts) (d) OSEM reconstruction with 

high-level noise and 5 mm Gaussian filter (total 1.4×107 prompt 

counts). 
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using the ultrafast gradient-echo sequence and 

reconstructed into a 208 × 256 × 256 matrix with voxel sizes 

of 1.0 × 0.98 × 0.98 mm (An et al. 2016). 

The other set was the PET/MRI data of a patient with head 

and neck cancer 76 years old female. Both T1- and T2-

weighted MRIs were acquired using a turbo spin-echo 

sequence, whereas the [18F]FDG PET scan was obtained after 

110 min injection of 256 MBq of the radiotracer. The 

dimension of T1-weighted image was 290 × 320 × 42 with 

voxel sizes of 0.69 × 0.69 × 4.92 mm and that of T2-weighted 

image was 640 × 640 × 42 with voxel sizes of 0.34 × 0.34 × 

4.92 mm. Of the MRIs, only T1-weighted MR images were 

used for the regularized PET reconstruction. Retrospective use 

of all human data was approved by the Institutional Review 

Board of our institute.  

Deep learning-based super-resolution along the 𝑧-axis was 

performed because the slice thickness of the acquired MR 

image was thicker than that of the PET scan (Kang et al. 2021). 

The SPM12 (SPM12; University of College London, UK) 

program was used to re-slice the MR images to have the same 

voxel size and dimension as that of the PET scan. The Fourier 

rebinning (FORE) algorithm was applied to the pre-corrected 

PET sinogram data, and 2D projection and the backprojection 

algorithm were used (Defrise et al. 1997). The same 

regularization parameters or post-filters as those used in the 

computer simulation were applied. The number of voxels 

selected within the patch was fixed at 20, which was showed 

quantitatively better performances in the simulation study. 

The regularization parameters for the original Bowsher prior 

were from 0.1×2-1 to 0.1×27 with logarithmic scale 2, and 

those for the proposed 𝑙1  Bowsher prior were 0.1× 20 to 

0.1×28. For the clinical data, consistent with standard OSEM-

reconstruction methods for brain imaging on our clinical 

scanner, we did not apply spatial resolution modeling for 

OSEM nor for the 3 prior models. 

2.7 Image Analysis 

Standard deviation (STD) and bias in the PET image 

intensity were calculated for each region in the simulation 

study: 

 

Biasregion =
1

𝑛
∑𝒙GT,𝑖

region
− 𝒙recon,𝑖

region

𝑖

, (17) 

  

STD = √
∑ (𝒙GT,𝑖

region
− 𝒙recon

region
)
2

𝑖

𝑛region − 1
, 

(18) 

 

where 𝒙recon
  is a reconstructed image of the given region 

(GM, WM, and tumors), 𝒙recon
region

 is the mean value over the 

given region, 𝑛region is the number of voxels, and 𝒙GT
region

 is 

the ground truth value of each region. The number n is the 

number of instances in the ensemble (n=15). 

From the [18F]FDG brain PET of a healthy volunteer, we 

calculated the mean uptake level (kBq/ml) in the frontal lobe, 

cingulate cortex, superior parietal gyrus, and lateral temporal 

gyrus using regions of interest (ROI) drawn only on the gray 

matter pixels shown in the MRI. The SPM12 program was 

used to extract gray matter and the above ROIs were defined 

in the AAL template (Tzourio-Mazoyer et al. 2002, Ashburner 

and Friston 2005). The standard deviation of the white matter 

Algorithm 2. OS-Modified proximal gradient with iteratively reweighting 

1:  input 𝒚 and 𝒛 

2:  initialize x 

3:     for 𝑛1 = 1 … 𝑛out do 

4:        for 𝑛2 = 1…𝑛subsets do 

5:           𝒙EM = 𝒙 − 𝐷(𝒙)𝛻𝐿𝑛2(𝒙)  

6:              for 𝑗 = 1…𝑛𝑗 do 

7:                  if 𝑛1 = 1 

8:                     𝒙𝑗,prox
EM = prox𝑅𝑙1

𝐷(𝒙𝒋)
−1

(𝒙𝑗
EM|𝒛) (eq. (12)) 

9:                     set 𝒙 = 𝒙prox
EM  

10:                  else 

11:                     𝒙𝑗,prox
EM = prox

𝑅𝑙1
𝐼𝑅

𝐷(𝒙𝒋)
−1

(𝒙𝑗
EM|𝒛) (eq. (12) with weight (16)) 

12:                     set 𝒙 = 𝒙prox
EM  

13:                  end 

14:              end 

15:        end 

16:     end 

17:  return  
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pixel value was obtained because the white matter exhibits 

uniform FDG uptake. We focused on two lesions (large and 

small) with high uptake in the patient with head and neck 

cancer. 

3. Results 

3.1 Simulation with Brain Phantom 

The proposed 𝑙1  Bowsher prior recovered the detailed 

structure of the GM and tumors well even under high-level 

noise circumstances. Figures 3 and 4 show the representative 

reconstruction results for different noise levels (low and high) 

and patch sizes (10 and 20 voxels). Fifth regularization 

parameters (0.1×24 for 𝑙2 Bowsher prior and 0.1×25 for others) 

were chosen for the visualization. The PET intensity in the 

large lesion was also less smeared with the proposed methods. 

Although the original Bowsher prior over-smoothed the small 

tumor, the proposed 𝑙1 Bowsher prior methods preserved the 

shape and intensity of the small lesion. Figures 5 and 6 show 

the bias map for different noise levels (low and high). The 

proposed methods yielded lower bias under both low and 

high-level noise circumstances. Moreover, the bias of artificial 

lesions, especially for small lesion, were lower in the 

iteratively reweighted 𝑙1  Bowsher prior than all the other 

reconstruction methods. This phenomenon also can be 

observed in the bias-STD plot (Figure 7) for each simulated 

region (Gray matter, white matter, large lesion and small 

Figure 3. The representative reconstructed images using original 𝒍𝟐 Bowsher prior, proposed 𝒍𝟏 Bowsher prior and its iterative reweighting 

variation under low-level noise circumstances (total 7.0×107 prompt counts). Red arrow indicates the position of small lesions. a. Ground 

truth, b. 10 voxels selection in the given patch (nearest 80 voxels) and c. 20 voxels selections in the given patch. 

Figure 4. The representative reconstructed images using original 𝑙2 Bowsher prior, proposed 𝑙1 Bowsher prior and its iterative reweighting 

variation under high-level noise circumstances (total 1.4×107 prompt counts). Red arrow indicates the position of small lesions. a. Ground 

truth, b. 10 voxels selection in the given patch (nearest 80 voxels) and c. 20 voxels selections in the given patch. 
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lesion). Both the bias and STD were suppressed by the 

proposed 𝑙1  Bowsher prior methods as the regularization 

parameter increases, however, the bias became greater with 𝑙2 

Bowsher prior. The bias for artificial lesions with iteratively 

reweighted 𝑙1 Bowsher prior yielded the lowest value.  

3.2 Human Data 

As described in the Methods section, 20 voxels were 

selected in the patch for all reconstruction, which showed the 

better performance. With respect to the human data, the 

proposed 𝑙1 Bowsher prior methods outperformed the original 

𝑙2 Bowsher prior in preserving the detailed structures while 

suppressing the noise. As depicted in the [18F]FDG PET image 

of the healthy volunteer (Figure 8), the original 𝑙2  Bowsher 

prior with high regularization parameters yielded a blurred 

Figure 5. Bias map of computer simulation results using original 𝑙2 Bowsher prior, proposed 𝑙1 Bowsher prior and its iterative reweighting 

variation under the low-level noise circumstances (total 7.0×107 prompt counts). a. 10 voxels selection in the given patch (nearest 80 voxels) 

and b. 20 voxels selection in the given patch. 
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shape and decreased the uptake in some gyri, as highlighted 

with red boxes, and most subcortical regions, such as in the 

striatum. However, the proposed 𝑙1  Bowsher prior did not 

indicate such an adverse impact of the high regularization 

parameter.  

These findings were confirmed in the quantitative analysis 

summarized in Figure 9 that shows the STD of uptake in white 

matter versus the mean uptake in four different gray matter 

regions (frontal lobe, cingulate cortex, superior parietal gyrus, 

and lateral temporal gyrus). Iteratively reweighted 𝑙1 Bowsher 

prior showed higher uptake than other methods with similar 

STD. The uptake in the gray matter decreased as the 

regularization parameter increased when the original Bowsher 

prior was used.  However, the uptake level was more constant 

with the 𝑙1 Bowsher prior.  

Figure 6. Bias map of computer simulation results using original 𝑙2 Bowsher prior, proposed 𝑙1 Bowsher prior and its iterative reweighting 

variation under the high-level noise circumstances (total 1.4×107 prompt counts). a. 10 voxels selection in the given patch (nearest 80 voxels) 

and b. 20 voxels selection in the given patch. 
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In addition, the 𝑙1 Bowsher prior methods better preserved 

the increased PET uptake in the small lesion that showed low 

contrast in the structural T1 MRI used for the guiding anatomy 

as compared to the original Bowsher prior (Figure 10). It 

should be noted that the T2 MRI images presented in Figure 

10 as supporting evidence of the malignancy of the tumor were 

not used in the anatomy-guided reconstruction. 

4. Discussions 

In this study, we propose an MRI-guided regularized PET 

reconstruction based on a new 𝑙1  Bowsher prior and its 

application with the iterative reweighting scheme. In these 

methods, (12) plays a pivotal role in incorporating side 

information into the reconstruction process. The proposed 

proximal operator described in this equation is similar to the 

soft-thresholding operator used in the Lasso regression 

(Tibshirani 1996). Both operators commonly cause the 

sparsity of their solution, leading to better detectability of 

small lesions.  

As demonstrated by the simulation and real data, better 

contrast between the background and small lesions with 

abnormal PET uptake was obtained by applying the proposed 

𝑙1  Bowsher prior and its iterative reweighting variation as 

compared to the original 𝑙2 Bowsher prior. The performance 

of the proposed method was particularly superior when such 

lesions are not shown in the MRI used for the regularized PET 

reconstruction (Figures 3, 4, and 10). The original 𝑙2 Bowsher 

prior leads to smeared PET intensity in small lesions when 

there is low contrast between the tumor and surrounding tissue 

in the anatomical prior. This is because, in (2) and (6), tumor 

voxels are not distinguishable based on the difference in 

voxels in the anatomical image. However, the proposed 𝑙1 

Bowsher prior enables to preserve the edges between the 

tumor and the surrounding tissue in PET because of the 

intrinsic edge-preserving property of the prior based on the 𝑙1-

norm. Moreover, enhanced sparseness by iterative reweight 

enlarged this effect. The proposed method also showed 

sharper boundaries than the original method when the 

boundaries of the MRI structures were blurred (striatum in 

Figure 8; Note that it is unknown whether the boundary should 

be sharp or the sharpness is an artifact of the 𝑙1 -norm). In 

addition, the proposed method demonstrated smaller bias and 

less hyper-parameter dependency in PET intensity estimation 

in the regions (GM and WM) with matched anatomical 

boundaries in PET and MRI (Figures 5 and 6). The proposed 

𝑙1 Bowsher prior methods well preserve the mean uptake level 

of ROI even with the high regularization parameter although 

there is a trade-off between the standard deviation and the 

mean uptake level of ROI in the original 𝑙2 Bowsher prior.  

Introducing iterative reweight scheme in the reconstruction 

with 𝑙1 Bowsher prior allowed better visualization of small hot 

regions compared to the vanilla 𝑙1 Bowsher prior as shown in 

Figures 3, 4, and 10. It would be because, as mentioned above, 

the iterative reweighting enhances the sparseness of the prior. 

It originally aimed to approximate the optimization process 

from the 𝑙1  relaxation to the 𝑙0  minimization (Candes et al. 

2008). The sparsity of the intensity difference defined in (2) is 

important when the matched anatomical information is not 

provided because the uptake of these regions will be smoothed 

by the prior. However, if the optimization algorithm can 

preserve the sparseness, hot uptake surrounded by warm 

background can be preserved as shown in Figures 3, 4 and 10. 

However, promoting sparseness of the prior sometimes leads 

to a side effect. Under the high-level noise circumstance, it is 

not an easy task to distinguish noise and true signal in the 

image, resulting in worse denoising performance compared to 

the vanilla 𝑙1 Bowsher prior (Figure 10, third row). The 𝜖 is 

another control parameter and finding optimal settings 

Figure 7. Bias-STD plot of computer simulation results using 

original 𝑙2  Bowsher prior, proposed 𝑙1  Bowsher prior and its 

iterative reweighting variation for four regions and two noise levels. 

a. Gray matter (GM) for low-level noise, b. white matter (WM) for 

low-level noise, c. large lesion for low-level noise, d. small lesion 

for low-level noise, e. GM for high-level noise, f. WM for high-level 

noise, g. large lesion for high-level noise and h. small lesion for 

high-level noise. Plots start from zero regularization. 
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including the number of patches and the number of selected 

voxels is a future direction of the research.  

Although this is the first study to apply 𝑙1 -norm to the 

Bowsher prior as far as we know, the 𝑙1 -norm has been 

investigated extensively in the more general context of 

Bayesian (or penalized likelihood) image reconstruction. 

Various total variation (TV) minimization approaches have 

been proposed to improve the image quality of CT and 

emission tomography (Rudin et al. 1992, Sawatzky et al. 2008, 

Guo et al. 2009, Ahn et al. 2012, Wang et al. 2014, Ehrhardt 

et al. 2019, Knoll et al. 2017, Niu et al. 2014, Gu et al. 2018, 

Burger et al. 2014, Son et al. 2014). In the most TV 

approaches, the 𝑙1-norm of the discretized image gradient is 

used to regularize the fidelity optimization while preserving 

the edge information. In general, the TV-𝑙1 model suppresses 

noise in the uniform region more effectively than the 𝑙2-norm 

regularization. However, TV- 𝑙1  regularization often causes 

so-called “staircase” artifacts, yielding multiple flat regions 

separated by sharp boundaries. For PET images with high-

level noise and low spatial resolution, the edges produced by 

TV prior might be inaccurate.  

 

Figure 9. Quantitative analysis on four different regions in brain 

[18F]FDG PET images. a. frontal lobe, b. cingulate cortex, c. 

superior parietal gyrus and d. lateral temporal gyrus. Plots start 

from zero regularization. 

Figure 8. Reconstructed brain [18F]FDG images of a healthy volunteer. The magnified region is highlighted by the red box. The FWHMs of 

Gaussian filter were from 1 mm to 8 mm, and the results of the first regularization parameter among 9 implementations (0.1×2-1 for 𝑙2 Bowsher 

and 0.1×20 for others) were not shown. 
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The shortcomings of the 𝑙1-norm regularization could be 

alleviated by the anatomical prior because the edge-preserving 

property of the 𝑙1 -norm regularization is guided by the 

anatomical prior (Figure 11). However, the “staircase” 

artifacts still appear when the regularization parameter is high 

(Figures 8 and 10), so further investigations to mitigate the 

artifacts are needed. Another significant difference in this 

study from others is that the 𝑙1-norm was applied to the Gibbs 

prior calculated using the distance between local neighboring 

pixels. Although many previous studies have used 𝑙1 -norm 

with TV prior (Beck and Teboulle 2009a, Goldstein and Osher 

2009, Sawatzky et al. 2008), there are relatively few studies 

on 𝑙1-norm regularization with other prior than TV for solving 

the inverse problems (Wang et al. 2012, Liu et al. 2019). 

Wang et al. applied 𝑙1-norm directly to the solution vector and 

used the barrier function as well as the projection method to 

find the update equation. Liu et al. used both TV and 𝑙1-norm 

of the image vector in the cost function, which is minimized 

by a fast iterative shrinkage-thresholding algorithm (FISTA) 

(Beck and Teboulle 2009b). Both studies examined 𝑙1-norm 

of the image vector, however, we modified potential function 

of the Gibbs prior from 𝑙2-norm to 𝑙1-norm. To minimize the 

Figure 10. Reconstructed [18F]FDG images of a head and neck cancer patient. Only T1 MR image was used for the anatomy-guided 

reconstruction. The FWHMs of Gaussian filter were from 1 mm to 8 mm, and the results of the first regularization parameter among 9 

implementations (0.1×2-1 for 𝑙2 Bowsher and 0.1×20 for others) were not shown. 

Figure 11. Comparison between TV prior using EM-TV algorithm 

(Sawatzky et al.) and 𝑙1 Bowsher methods. Low count simulation 

data was used and the regularization parameter for TV prior was 4 

and the others were the same with Figure 4 (0.1×25). 
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proposed 𝑙1  Bowsher prior, modified proximal gradient was 

calculated and combined with the ordinary EM update. 

A limited number of segmentation-free anatomy-guided 

reconstruction methods have been proposed so far. One of 

them is the kernel method that assumes that the PET image is 

a linear function of the transformed anatomical features from 

the MRI. The kernel-based method that encodes prior 

information into the PET projection model is another 

(Hutchcroft et al. 2016). In this method, patch-based MR 

image features are employed to form the kernel matrix. 

Because this kernel method incorporates anatomical 

information in the maxim likelihood formulation rather than 

in the penalized likelihood framework, it is amenable to 

ordered subsets. However, this approach also suffers from the 

over-smoothing of PET intensity in the regions where the PET 

uptake pattern differs from the anatomical side information. A 

parallel level set (PLS) prior between the anatomical and 

reconstructed PET image (Ehrhardt et al. 2016) is more robust 

to the discrepancy between the PET uptake pattern and 

anatomical side information. Nevertheless, using a 

differentiable prior requires well-defined parameter settings 

during the optimization process. Moreover, there is a report 

that the asymmetrical Bowsher prior shows better 

performance than the PLS method (Schramm et al. 2018). Our 

proposed method is also based on the Bowsher prior, but we 

have incorporated it into the edge-preserving property of the 

𝑙1 -norm. The optimization of the cost function is easy to 

implement using the proximal gradient algorithm and the 

closed-form solution of the proximal operator. Similar to the 

original Bowsher prior, the proposed method can be applied 

to multiple MRI pulse sequences. As presented in Figure 10, 

various MR images with various pulse sequences were 

acquired during routine PET/MRI studies. The weight used in 

(6) can be modified by combining information from the 

multiple MRI pulse sequences. 

In this study, we applied the FORE algorithm to pre-

corrected sinogram for scatter, random and attenuation to 

reconstruct real patient PET images using proposed prior 

models (Defrise et al. 1997). This would cause problems in 

terms of performance such as degraded sensitivity and 

resolution. However, the same optimization schemes can be 

used by replacing only the projection and backprojection parts 

to the 3D methods.  

Another limitation of this study is that spatial resolution of 

the PET scanner was not modeled during image reconstruction. 

To reconstruct accurately the activities of the various regions, 

anatomical information can be helpful. However, accurate 

modeling of spatial resolution is generally also important. In 

addition, the levels of blur and accuracy of modeling might 

substantially affect the absolute and relative performance of 

𝑙1 - and 𝑙2  norm priors. The spatial resolution would be 

accurately modeled for the computer-simulation studies 

because there isn’t much blur in the simulation projection data 

and the reconstruction uses that same model of only very 

minor blur. This accurate modeling of spatial resolution is one 

reason why all priors were able to drive the bias to low values 

in the computer-simulation study.  

An approach to anatomy-guided functional image 

enhancement using deep neural networks is emerging, as deep 

learning is outperforming conventional approaches based on 

numerical and statistical signal processing in several different 

areas (Vincent et al. 2010, Xie et al. 2012, Krizhevsky et al. 

2012, Agostinelli et al. 2013, Simonyan and Zisserman 2014, 

He et al. 2015, Dey et al. 2018, Mansour 2018). Beyond 

simple noise reduction by recovering high-statistics PET 

images from the pair of anatomical image and low-statistics 

PET scan, more sophisticated concepts such as super-

resolution and partial volume correction of PET are now being 

handled using deep learning (Rigie et al. 2018, Song et al. 

2019, Xu et al. 2017). Generation of anatomical images or the 

standard template from PET data using deep neural networks 

proposed for PET spatial normalization and attenuation 

correction (Choi and Lee 2018, Kang et al. 2018, Hwang et al. 

2019, Hwang et al. 2018) can be potentially utilized for 

reducing PET noise and enhancing its spatial resolution and 

image contrast. These methods have the potential for 

providing anatomical side information to be used for anatomy-

guided PET image reconstruction. Including pre-trained deep 

neural networks that utilize anatomical side information for 

enhancing PET into PET-iterative reconstruction would also 

be an interesting future research topic (Adler and Ö ktem 2018, 

Gupta et al. 2018, Kim et al. 2018, Gong et al. 2018). 

5. Conclusions 

In this study, we proposed an 𝑙1-norm-based Bowsher prior. 

The proximal gradient algorithm was exploited to solve the 

penalized likelihood function, and a modified proximal 

operator for EM-based reconstruction was provided. The 

iterative reweighting scheme that enforces sparseness of the 

prior improved both qualitative and quantitative results. The 

results from the computer simulation support the fact that our 

proposed methods yield a better quantification of tumors as 

well as the GM and WM than the previous approaches. 

Besides, clinical data suggest that the proposed prior method 

might better visualize small regions than 𝑙2  Bowsher prior. 

Therefore, these methods will be useful for improving the PET 

image quality based on the anatomical information provided 

by other anatomical imaging systems. Nevertheless, further 

evaluation of the proposed method with more clinical data and 

spatial resolution modeling will be necessary.  
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