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Abstract

We propose a deep learning-based data-driven respiratory phase-matched gated-PET attenuation
correction (AC) method that does not need a gated-CT. The proposed method is a multi-step process
that consists of data-driven respiratory gating, gated attenuation map estimation using maximum-
likelihood reconstruction of attenuation and activity (MLAA) algorithm, and enhancement of the
gated attenuation maps using convolutional neural network (CNN). The gated MLAA attenuation
maps enhanced by the CNN allowed for the phase-matched AC of gated-PET images. We conducted a
non-rigid registration of the gated-PET images to generate motion-free PET images. We trained the
CNN by conducting a 3D patch-based learning with 80 oncologic whole-body
'8E-fluorodeoxyglucose (**F-FDG) PET/CT scan data and applied it to seven regional PET/CT scans
that cover the lower lung and upper liver. We investigated the impact of the proposed respiratory
phase-matched AC of PET without utilizing CT on tumor size and standard uptake value (SUV)
assessment, and PET image quality (%STD). The attenuation corrected gated and motion-free PET
images generated using the proposed method yielded sharper organ boundaries and better noise
characteristics than conventional gated and ungated PET images. A banana artifact observed ina
phase-mismatched CT-based AC was not observed in the proposed approach. By employing the
proposed method, the size of tumor was reduced by 12.3% and SUV e, was increased by 13.3% in
tumors with larger movements than 5 mm. %STD of liver uptake was reduced by 11.1%. The deep
learning-based data-driven respiratory phase-matched AC method improved the PET image quality
and reduced the motion artifacts.

1. Introduction

Respiratory motion is a patient factor that degrades image quality and quantitative accuracy of positron emission
tomography (PET). In addition, the anatomical mismatch between PET and computed tomography (CT)
images due to different breathing patterns during PET and CT scans causes artifacts in the PET images corrected
for attenuation and scatter based on CT-derived attenuation maps (e.g. banana artifacts shown in coronal PET
slices) (Goerres et al 2003). PET quantification errors due to changes in lung density between the PET and CT
images are also significant (Holman et al 2016).

The degradation of PET image quality due to the respiratory motion can be alleviated by employing a
respiratory gating method that divides the respiratory cycle into multiple phases and sorts the acquired events
into temporal bins (Werner et al 2009). However, the conventional respiratory-gated PET acquisition requires
additional external devices to track the respiratory motion (e.g. RPM and Anzai belt). In addition, the gated PET
images are noisier than ungated PET because of the smaller number of events collected in each temporal bin than
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Figure 1. Data flow in the deep learning-based phase-matched attenuation correction method proposed in this study.

in total. To overcome the limitations of the external device-based respiratory gating methods, various data-
driven approaches have been proposed (Schleyer et al 2009, Kesner et al 2014, Bertolli eral 2017, Ren et al 2017).
As the data-driven gating methods estimate the respiratory motion based on the motion of radioactivity within a
patient, their measurements are closely linked to the respiratory motion of organs (Walker et al 2019).

By estimating the motion vector field between the respiratory bins and performing non-rigid image
registration using the estimated motion, we can employ all the events collected during the gated-PET acquisition
and generate motion-free PET images (Bousse et al 2016, Lu et al 2018). To avoid the artifacts caused by the
phase-mismatch between PET and CT, attenuation correction (AC) of the gated-PET images using phase-
matched gated-CT is necessary (Nehmeh et al 2004a, 2004b, Luo et al 2008, Li et al 2009). However, external
motion-tracking devices are required for gated-CT data acquisition that causes additional radiation exposure
(Biither et al 2009). To address this issue, a simultaneous activity and attenuation estimation method was
employed for phase-matched AC and motion estimation (Lu et al 2018). However, one of the limitations of the
pioneering work was the potential errors in motion-estimating registration due to the high noise level of the
simultaneously estimated activity images.

This study aims to develop a data-driven respiratory phase-matched gated-PET AC method that does not
require the acquisition of CT at all. This method is also based on simultaneous activity and attenuation
reconstruction improved by a deep neural network. The schematic of the proposed method is summarized in
figure 1 and supplemental figure 1 (available online at stacks.iop.org/PMB/66,/115009/mmedia). The
respiratory cycle was estimated by calculating the centroid-of-distribution (COD) of detected events during the
PET scan without an external motion-tracking device (Ren et al 2017). Gated activity and attenuation maps were
then simultaneously reconstructed using maximum-likelihood reconstruction of attenuation and activity
(MLAA) algorithm that requires solely the emission PET data (Rezaei et al 2012). High-quality gated attenuation
maps were generated using a convolutional neural network (CNN) that was trained to predict a CT-derived
attenuation map (u-CT) from MLAA activity and attenuation maps (\-MLAA and ;-MLAA) (Hwang et al
2018a,2019a, Shieral 2019). The CNN-enhanced attenuation map for each gating bin was used for the phase-
matched PET attenuation and scatter correction. The corrected gated-PET activity images were used for a
motion vector field estimation between the gating bins. Finally, motion-free PET images were generated using
the estimated motion vector field.

We trained the CNN by conducting a 3D patch-based learning with 80 oncologic whole-body
18F—ﬂuorodeoxyglucose (*®F-FDG) PET/CT scan data and applied it to seven regional PET/CT scans that cover
the lower lung and upper liver—the most vulnerable regions to the respiratory motion artifact. We further
investigated the impact of the proposed respiratory phase-matched AC of PET without utilizing CT on tumor
size and standard uptake value (SUV) assessment and PET image quality.

2. Materials and methods

2.1. Data set

For training the network, whole-body '*F-FDG PET/CT scan data of 80 oncologic patients acquired using a
Biograph mCT 40 scanner (effective timing resolution = 580 ps, Siemens Healthcare, Knoxville, TN) was
retrospectively used which was same training and validation set used in our previous work (Hwang et al 2019b).
In the PET scans, the upper body from head to upper thigh was scanned in 6-8 bed positions with a scan
duration of 1 min/bed.
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To evaluate the performance of the proposed method, the regional '*F-FDG PET/CT scan data of seven
oncologic patients (five male and two female, age = 63.4 £ 10.7 years) acquired using the same PET/CT
scanner were used. Patients were asked to hold the breath at the end-of-expiration during the CT acquisition. In
these patients, listmode data was collected for 5 min in a bed position that includes lower lung and upper liver of
each patient. The listmode data were histogrammed into four gated-sinograms (1.25 min each) as shown in
figure 1. To generate the gated-sinograms, gating signals were estimated using a data-driven method described in
the further section. Further, ungated sinograms were generated by integrating the entire 5 min data. Details on
the data-driven gating are supplied in the next section.

For all the patients, PET/CT imaging was performed 60 min after intravenously injecting the '*F- FDG (5.18
MBq kg "). The retrospective use and prospective acquisition of the scan data was approved by the Institutional
Review Board of our institute and informed consent was obtained from all individual participants in this study.

2.2. Simultaneous image reconstruction

We reconstructed PET data sets using the MLAA with the TOF information (6 iterations and 21 subsets, 5 mm
Gaussian post-filter) as described in our previous work (Hwang et al 2019a). To resolve the non-unique global
scaling problem in the MLAA, the boundary constraint was applied during the attenuation image estimation in
the MLAA (Rezaei et al 2012). For scatter correction in the MLAA, scatter sinogram was estimated from p-CT
using single scatter simulation (Watson et al 1996).

2.3. Data-driven respiratory signal measurement

The COD algorithm is a data-driven motion signal estimation method that requires no external device to
measure the respiratory motion of patients (Ren et al 2017). Previous studies reported that the estimated motion
signal using the COD method corresponds well with the external device-based methods (Ren etal 2017, Feng
etal 2018). The COD indicates the center-of-mass of lines-of-response (LORs) measured within a specific PET
field-of-view and time-bin. The COD is calculated as follows:

where Z; is the center of LOR for each coincidence event in the axial direction and N is the total number of LORs.
To extract the respiratory motion signal from the PET listmode data, a 100 ms long time-bin was used. The z-
coordinate of COD (vertical motion in coronal and sagittal planes) was considered as the internal organs (and
radiotracers within them) primarily move up and down owing to the respiration. We incorporated TOF
information in the COD signal measurement to improve the accuracy of the COD method (Ren et al 2017).

Owing to the limited number of LORs measured in a short time-bin, noise level of the raw COD signal is
high. Therefore, aband-pass filter that preserves 0.06—0.50 Hz frequency components was used for the raw COD
signal to reduce statistical variation and baseline drift (Supplemental figure 2). From the filtered COD signal,
breathing peaks were extracted to determine respiratory cycles. Each respiratory cycle (peak-to-peak) was
divided into four gating windows with an even temporal length (figure 1). This phase-based gating approach was
adopted in this study than the amplitude-based gating as the phase-based gating is insensitive to baseline drifts
and other inaccuracies in the signal (Dawood et al 2007).

2.4. Network architecture and training
The CNN was designed to predict ;1-CT from MLAA outputs (u-MLAA and A-MLAA) that are noisy and subject
to crosstalk artifact (Hwang et al 2018a, 2019a). Inputs to the CNN were pi-MLAA and A-MLAA in the form of
32 X 32 x 32 matrix patches, and labels (ground-truth) were patches of the same size from p-CT at the
corresponding location. As shown in figure 1 and Supplemental figure 1, we employed a 3D U-net-based
network with batch normalization. Certain convolutional layers preceded the U-net structure to reduce the
noise in A-MLAA where a patch-based intensity normalization using mean and variance of the patch was
employed. No other preprocessing or normalization is applied on -MLAA. In the last layer that provides an
output,1 x 1 x 1 convolution was used for scaling. Each convolution and deconvolution layer, except the last
layer, was composed of 3 x 3 x 3kernels (supplemental figure 1). To prevent the CNN from learning
geometric and systematic artifacts from the -CT, 3D patches for training the CNN were selected randomly
rather than selected from the regular grid with even spacing. The 3D patches were employed for the CNN
training if their centers are included in the body to avoid meaningless computation with blank patches. In
addition, the MLAA outputs from the full iteration (iteration 6) and intermediate MLAA outputs from iterations
1-5 were used as the training set for the CNN to be more generalized and robust to various noise levels.
Consequently, approximately 7.5 million patches were used for the CNN training.

To generate an output image with the trained network (1-CNN), inferences from the input patches were
stacked into the image matrix. As the inference for boundary voxels in a patch is not as accurate as that of the
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center, 16 x 16 x 16 voxels at the center of 32 x 32 X 32 voxels were used for generating the 1--CNN. The
cost function to train the network was L1-norm between the network output and p-CT. The cost function was
minimized using adaptive moment estimation algorithm (Kingma and Ba 2014). The size of mini-batch for
accelerating the learning speed and improving the robustness in convergence was 64.

2.5. Additional activity image reconstruction

The gated-PET activity images were then reconstructed using an ordered-subset expectation-maximization
algorithm (3 iterations and 21 subsets) where the ;-~-CNN was used for attenuation and scatter corrections. These
gated-PET activity images were used for generating a motion-free PET image as described in the following
section. For comparison, gated and ungated sinograms were also reconstructed using ;-CT.

2.6. Estimating motion vector field and non-rigid registration

For non-rigid image registration and motion-free image generation, we selected a gate bin (reference gate bin)
where the pi-CNN is most similar to the y-CT acquired at end-of-expiration while holding the breath. The
similarity was measured using Dice similarity coefficient of the segmented lung regions in yi-CNN and p-CT
(Aasheim et al 2015, An et al 2016). The motion vector field from each gate bin to the reference bin was estimated
using Elastix software (Klein et al 2010). In the Elastix, a B-spline transform is used for the motion field
estimation, and mean squared errors between gate and reference bins are minimized using adaptive stochastic
gradient descent algorithm. We used the logarithm of the PET activity images to estimate the motion vector field
to reduce the registration error due to the large dynamic range and high noise level of the gated-PET images.
Applying constraint on the motion vector fields by masking on patient’s body prevented them from diverging
outside the body. The mask was the union (U) of binary images derived from gated and statics images by
applying intensity thresholds. This was clarified in the revised manuscript. Using the estimated motion vector
fields, the activity images reconstructed using the ;--CNN for all gate bins were warped into the reference bin and
averaged to generate a motion-free PET image.

2.7.Image analysis
The attenuation coefficient of the lungs at the end-of-expiration and end-of-inspiration were measured on the
gated ;-CNN.

To evaluate the impact of the proposed method on the tumor size and SUV assessment and PET image
quality, we drew volumes of interest (VOIs) on the PET activity images. VOIs were semi-automatically drawn on
24 suspected tumor regions with a movement higher than 5 mm in the seven patients by applying a threshold of
40% of maximum SUV in the tumor (SUV ,,,). The volume of VOIs (ml) was then calculated by multiplying the
number of voxel in the VOI with the volume of each voxel. SUVqq, was determined by averaging the SUV of
voxels with higher SUV than 90% of SUV,,,,. Additional VOIs were drawn on the relatively uniform region on
the liver to evaluate %STD (the percentage ratio of standard deviation and mean value of PET activity in each
VOI). For the comparison, tumor volume, SUVqq, and %STD in the gated PET images were also evaluated.

2.8. Comparison with other registration schemes
The proposed ‘post-reconstruction registration’ scheme was also compared to other schemes such as:

(1) Registration among attenuation-corrected gated PET using CT
(2) Registration among attenuation-corrected gated PET using MLAA without applying CNN

(3) Registration among non-attenuation-corrected gated PET

3. Results

3.1.Phase-matched AC

Figure 2 shows the p-maps generated using the original MLAA and proposed method (u-MLAA and p-CNN,
respectively) from a 5 min long ungated (left column) and 1.25 min long gated (middle columns) data. They
were compared with p-CT, the ground-truth (right column). Positions and outlines of the upper liver in y-
CNNis changed in accordance with the gate bin like respiratory motion (figures 2(a) and (b)). This implies that
the extracted respiratory signal properly divided the list-mode data. The ungated and gated pi-CNN had lower
noise levels and sharper boundaries than -MLAA. The high fluctuation of p-values shown at both ends of axial
FOV in the -MLAA was not observed in the ;-CNN. In addition, bone structures and soft organs were better
identified in the u-CNN.
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Figure 2. Attenuation maps generated using MLAA before and after CNN enhancement (.-MLAA and ;-CNN, respectively) in (a)
trans-axial and (b) coronal views. (c) Axial position (z) of the liver dome in each gate bin.
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Figure 3. Maximum intensity projection images of the gated-PET corrected for attenuation and scatter using (a) phase-mismatched
ungated ¢-CT and (b) phase-matched gated ;.-CNN.

The noise level in the gated pi-CNN was not inferior to that of the ungated ;-CNN and u-CT. In addition,
the boundaries of soft organs (e.g. kidneys) were better resolved in the gated ;i-CNN compared with the ungated
1-MLAA and pi-CNN. The axial position of the liver dome in the ungated ;.-CNN was different from the p-CT
because CT was acquired during breath-hold at the end-of-expiration, but the emission PET data were acquired
during the respiratory period (figure 2(b)). Contrarily, one of the four-gated pi-CNNs always corresponded well
with the p-CT (e.g. Gate 0 in figure 2) and used as the reference gate bin for the following motion correction.
Figure 3 shows the maximum intensity projection images of the gated PET corrected for attenuation and scatter
using (A) ¢-CT and (B) gated 4~-CNN. The banana artifact shown in the phase-mismatched CT-based AC
(figure 3(a)) that is the most evident at the end of inspiration (yellow arrow) is not observed in the phase-
matched gated ;1-CNN approach (figure 3(b)). The non-uniform activity in the stomach at the boundary
between fat and soft tissue which is observed in the CT-based AC at the end of inspiration (sky-blue arrow) is
also mitigated by the gated i-CNN. The lung cancer lesions shown in p-CT were also well represented in the
gated 1.-CNN images (arrows in figure 4). In addition, changes in the lung attenuation coefficient according to
the respiratory phase were observed (figure 5(a)). At the end-of-inspiration, the lung volume is expected to be
greater than at the end-of-expiration. Because the total mass of lung tissue must be preserved, the lung density
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Figure 4. Lung cancer lesions and their movement according to respiratory phase observed in (a) gated PET and (b) phase-matched
gated ;i-CNN in end-of-expiration and end of inspiration. (c) p-CT.
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Figure 5. Lung measurements in ;i-CNN. Changes in (a) attenuation coefficient between end-of-expiration (EE) and end-of-
inspiration (EI). (b) Bland-Altman plot for mean lung attenuation coefficient of phase-matched gated ;i-CNN and p-CT at the end-
of-expiration.

and attenuation coefficients at end-of-inspiration are expected to be smaller than at end-of-expiration, which is
consistent with what Shaker et al (2004) reported.

The difference in the lung attenuation coefficient between 1-CT and p-CNN at the end-of-expiration was
less than 6% except for a case who yielded 11% difference (figure 5(b)).

3.2. Motion-free image generation

In figure 6, 5 min long ungated PET images are overlaid on CT. The ungated PET image that is conventionally
used without phase-matched AC and motion compensation showed significant position mismatch between
PET and CT in addition to the motion artifact at organ boundaries (figure 6(a)). However, these problems were
mitigated by the proposed deep learning-based phase-matched AC without using CT, followed by the non-rigid
motion correction (figure 6(b)). When an author who is a nuclear medicine physician (Choi HY) has examined
all the output of motion corrections, there was no remarkable artificial creation of small lesions with high
activity (i.e. false positives) or the suppression of signal (i.e. false negatives).

The motion-free PET corrected with attenuation and respiratory motion using the phase-matched gated p-
CNN improved the lesion detectability and enhanced the uptake quantification for small tumors as shown in
figure 7 and Supplemental figure 3. In the conventional ungated PET images, tumors indicated by yellow arrows
were stretched along the axial direction due to the respiratory motion. On the contrary, the tumors shown in the
proposed motion-free PET images featured smaller size and higher activity. The results of the quantitative
analysis on the %STD, SUVyqe,, and tumor size are plotted in figure 8. By employing the proposed method, the
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Figure 6. Mitigated respiratory motion artifact and PET/CT mismatch obtained by the proposed method. (a) Conventional ungated
PET without phase-matched attenuation correction and motion compensation. (b) Motion-free PET corrected for attenuation and
respiratory motion using phase-matched gated /.-CNN and data-driven motion-tracking method.

Figure 7. Improved lesion detectability and enhanced uptake quantification of the proposed method. (a) Conventional ungated PET
without phase-matched attenuation correction and motion compensation. (b) Motion-free PET corrected for attenuation and
respiratory motion using phase-matched gated /t-CNN and data-driven motion-tracking method.
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Figure 8. Change of %STD of liver uptake, SUVgqq, in tumor, and tumor volume by employing the proposed phase-matched

attenuation correction and respiratory motion correction compared with ungated PET. Incremental change is colored red and the
contrary is colored blue.
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Figure 9. Comparison of post-reconstruction registration schemes using different attenuation correction methods.

tumor size measurement was reduced by 12.3% and SUV g, was increased by 13.3% in tumors with higher
movements than 5 mm. On the other hand, the tumor size measurement was reduced by 11.3% and SUV g0, was
increased by only 1.8% in reference gated PET. In the uniform region in the liver, %STD was reduced by 11.1%
in the proposed method while the reference gated PET showed 120% increase in %STD.

3.3. Comparison with other registration scheme

Figure 9 shows the motion-free images generated by applying different post-reconstruction registration schemes
in a representative case. The anatomical mismatch in CT-based AC resulted in the banana artifact (blue arrow).
The liver activity in the original MLAA approach without applying CNN was significantly higher than that of
proposed and CT-based approaches.

4. Discussion

Patient motion correction without an external motion-tracking device is one of the most active research areas of
PET imaging because wearing fiducial markers or Anzai belt for motion tracking is time-consuming and
uncomfortable (Slipsager et al 2019). The COD method employed in this study is a promising approach to the
device-less estimation of linear motion (Ren et al 2017). In this study, the vertical motion of internal organs in
the chest and abdomen owing to the respiration was estimated using the COD method enhanced by TOF
information and band-pass filtering. The estimated COD signal was useful for the phase-based gate-binning of
the list-mode data. Although the phase-based gating yields uniform statistical noise characteristicsand MLAA
reconstruction performance across the gating bins (figures 2 and 3), this method would be less robust than the
amplitude-based approach to the patients with irregular breathing. Further investigation on the impact of the
gating methods on MLAA estimation, CNN-filtering, and motion-free PET generation will be necessary.

One of the limitations of this study that we conducted the MLAA reconstruction with the scatter distribution
estimated from pi-CT. Iterative methods to estimate the scatter distribution during the MLAA reconstruction
were recently proposed (Rezaei et al 2019, Li et al 2020). However, the additional computation time required for
the repeated scatter estimation would hinder their practical use. One of the more practical ways we are
considering is the deep learning-based scatter estimation incorporated into the MLAA.

Also, the lack of a convincing gold standard is the main limitation of this proof-of-concept study. Either
breath-hold PET which is hard for standard PET systems or a high count single-gated reference is a more
convincing gold standard. In addition, a dynamic CT rather than a breath-hold CT can offer a good means to
assess the deformed CT map.

Another limitation is that ungated PET and CT images were used for the CNN training that was applied to
the gated PET data. Because we performed patch-based learning, major data used for the network training came
from other regions rather than lung and upper liver that are vulnerable to the position mismatch due to
respiration in ungated PET/CT (Hwang et al 2019a, 2019b). In addition, the noise level of gated PET tested in
this study would be similar to the training data set because the scan times for each frame of the gated PET and
ungated PET were 1.25 and 1.0 min, respectively.

The small number of respiratory-gated PET scan datasets used for the performance evaluation of the
proposed method is another limitation of this study. Because it is quite small to produce sufficient evidence of
the method working well and systematically on many occasions, further investigations with a larger number of
subjects are necessary.

In almost all medical image processing topics including segmentation, registration, and restoration, the deep
learning method is rapidly implemented (Choi 2018, Gong et al 2018, Kang et al 2018, Kim et al 2018, Park et al
2018, Guo etal 2019, Hegazy et al 2019, Kale et al 2019, Lee et al 2019, Lee 2021). AC of PET using pseudo-CT
transformed from magnetic resonance imaging (MRI) is one of the most active deep learning research topics in
medical image generation (Liu et al 2017, Leynes et al 2018, Arabi et al 2019, Bradshaw et al 2018, Spuhler et al
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2019, Torrado-Carvajal et al 2019). However, the primary disadvantage of the MRI-based PET AC s that
converting MRI to CT using deep learning may not be physically and biologically relevant as the physical
quantity measured by the two modalities is not closely related (Vandenberghe and Marsden 2015, Yoo etal 2015,
Lee 2021). Our deep learning-based enhancement of the attenuation map reconstructed using simultaneous
PET activity and attenuation reconstruction algorithm, such as MLAA, would have better rationale than MRI-
based approaches as this approach does not rely on cross-modal image transform (Hwang et al 2019a).
Moreover, our approach has been validated for several PET radiotracers including '*F-FDG, '*F-FP-CIT, and
%8Ga-DOTATOC (Hwang et al 2018a, 2019a, 2019b). This approach has been used to combine the attenuation
maps from MLAA and Dixon MRI (Hwang et al 2018b). Thus, this attenuation map has the potential to replace
the MRI-based AC for future generations of TOF PET /MR scanners (Hwang et al 2018a).

Further, we showed that our approach to enhance the MLAA attenuation map using a deep learning
technique was useful for the phase-matched AC in the respiratory gating PET. The improved attenuation map
can also be effective in improving the performance of other simultaneous reconstruction based data-driven
motion correction methods (Lu et al 2018). The phase-matched AC is regarded necessary but impractical
because of the increased radiation dose from the gated-CT. Although not proven, our approach has the potential
to be superior to the gated CT-based phase-matched AC. This is because the patient motion and different
breathing patterns between PET and CT scans can cause another type of position mismatch artifact in a gated-
CT based approach (Lu et al 2018, Nehmeh et al 2004a).

Deep learning-based approaches, even if they can produce impressive results, need to be evaluated
rigorously because we don’t have to trust them unless clearly explained (Antun et al 2020). However, it is
impossible to validate a deep learning-based approach using all possible different datasets. One of the efforts we
have made to ensure the stability of the proposed method is the sanity check we performed in the previous work
(figure 5 in Hwang et al 2019b). In addition, the attenuation maps generated using MLAA and CNN enabled
more accurate AC in patients with metallic implants (figure 30 in Lee 2021). Although training set included CT
images with metal artifacts, CNN was not susceptible to the metal artifacts.

In this study, CNN trained and validated with ungated PET data performed well with the gated PET data.
There is concern that CNN may learn the systematic mismatches between MLAA and CT at the lung and liver
boundaries. However, The number of unmatched patch is relatively small, which prevents the CNN from
learning the mismatch. The relatively large difference between the activity images corrected for attenuation
using -CNN and p-CT at the lung and liver boundaries shown in our earlier work (figure 6 in Hwang et al
2019b) supports this idea.

There is an impact of motion in PET quantification not only due to the mismatch of emission and
attenuation and but also because of the attenuation value change with respiration (Shaker et al 2004, Holman
etal2016). Our proposed phase-matched attenuation maps also showed the change in attenuation coefficients
(figure 5(a)). The difference between the gated ;1-CNN at the end-of-expiration and ;1-CT was less than 6%
except for a case. In the exceptional case with 11% difference, only a small portion of the lungs (approximately
10% volume) was included in the PET image, leading to the statistical variation in p-value calculation.

The gated activity images corrected for attenuation with phase-matched attenuation maps using the
proposed method were integrated after the non-rigid registration to generate motion-free PET (Polycarpou et al
2012, Tsoumpas et al 2013). The motion-free PET allows for better SNR and lesion detectability than the gated-
PET that includes a smaller number of PET counts. The image-registration based motion-free image generation
is not a new approach. However, the anatomical image-guided PET motion correction has been rarely
investigated in PET/CT because of the lack of gated-CT. Therefore, utilizing the gated activity and attenuation
maps together for motion vector field estimation would be an approach that can achieve more robust motion
correction. Furthermore, we should evaluate the feasibility of the proposed method in gated and dynamic
cardiac PET scans.

5. Conclusion
We have developed a deep learning-based data-driven respiratory phase-matched AC method. As the COD
method enables successful extraction of respiratory signals and the CNN generates high-quality phase-matched

attenuation maps from MLAA outputs, the proposed method improved the PET image quality while mitigating
the motion artifacts.
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