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Abstract
Wepropose a deep learning-based data-driven respiratory phase-matched gated-PET attenuation
correction (AC)method that does not need a gated-CT. The proposedmethod is amulti-step process
that consists of data-driven respiratory gating, gated attenuationmap estimation usingmaximum-
likelihood reconstruction of attenuation and activity (MLAA) algorithm, and enhancement of the
gated attenuationmaps using convolutional neural network (CNN). The gatedMLAA attenuation
maps enhanced by theCNNallowed for the phase-matchedACof gated-PET images.We conducted a
non-rigid registration of the gated-PET images to generatemotion-free PET images.We trained the
CNNby conducting a 3Dpatch-based learningwith 80 oncologic whole-body
18F-fluorodeoxyglucose (18F-FDG)PET/CT scan data and applied it to seven regional PET/CT scans
that cover the lower lung and upper liver.We investigated the impact of the proposed respiratory
phase-matchedACof PETwithout utilizingCTon tumor size and standard uptake value (SUV)
assessment, and PET image quality (%STD). The attenuation corrected gated andmotion-free PET
images generated using the proposedmethod yielded sharper organ boundaries and better noise
characteristics than conventional gated and ungated PET images. A banana artifact observed in a
phase-mismatchedCT-basedACwas not observed in the proposed approach. By employing the
proposedmethod, the size of tumorwas reduced by 12.3% and SUV90%was increased by 13.3% in
tumorswith largermovements than 5mm.%STDof liver uptakewas reduced by 11.1%. The deep
learning-based data-driven respiratory phase-matchedACmethod improved the PET image quality
and reduced themotion artifacts.

1. Introduction

Respiratorymotion is a patient factor that degrades image quality and quantitative accuracy of positron emission
tomography (PET). In addition, the anatomicalmismatch between PET and computed tomography (CT)
images due to different breathing patterns during PET andCT scans causes artifacts in the PET images corrected
for attenuation and scatter based onCT-derived attenuationmaps (e.g. banana artifacts shown in coronal PET
slices) (Goerres et al 2003). PET quantification errors due to changes in lung density between the PET andCT
images are also significant (Holman et al 2016).

The degradation of PET image quality due to the respiratorymotion can be alleviated by employing a
respiratory gatingmethod that divides the respiratory cycle intomultiple phases and sorts the acquired events
into temporal bins (Werner et al 2009). However, the conventional respiratory-gated PET acquisition requires
additional external devices to track the respiratorymotion (e.g. RPMandAnzai belt). In addition, the gated PET
images are noisier than ungated PETbecause of the smaller number of events collected in each temporal bin than
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in total. To overcome the limitations of the external device-based respiratory gatingmethods, various data-
driven approaches have been proposed (Schleyer et al 2009, Kesner et al 2014, Bertolli et al 2017, Ren et al 2017).
As the data-driven gatingmethods estimate the respiratorymotion based on themotion of radioactivity within a
patient, theirmeasurements are closely linked to the respiratorymotion of organs (Walker et al 2019).

By estimating themotion vector field between the respiratory bins and performing non-rigid image
registration using the estimatedmotion, we can employ all the events collected during the gated-PET acquisition
and generatemotion-free PET images (Bousse et al 2016, Lu et al 2018). To avoid the artifacts caused by the
phase-mismatch between PET andCT, attenuation correction (AC) of the gated-PET images using phase-
matched gated-CT is necessary (Nehmeh et al 2004a, 2004b, Luo et al 2008, Li et al 2009). However, external
motion-tracking devices are required for gated-CTdata acquisition that causes additional radiation exposure
(Büther et al 2009). To address this issue, a simultaneous activity and attenuation estimationmethodwas
employed for phase-matchedAC andmotion estimation (Lu et al 2018). However, one of the limitations of the
pioneeringworkwas the potential errors inmotion-estimating registration due to the high noise level of the
simultaneously estimated activity images.

This study aims to develop a data-driven respiratory phase-matched gated-PETACmethod that does not
require the acquisition of CT at all. Thismethod is also based on simultaneous activity and attenuation
reconstruction improved by a deep neural network. The schematic of the proposedmethod is summarized in
figure 1 and supplemental figure 1 (available online at stacks.iop.org/PMB/66/115009/mmedia). The
respiratory cycle was estimated by calculating the centroid-of-distribution (COD) of detected events during the
PET scanwithout an externalmotion-tracking device (Ren et al 2017). Gated activity and attenuationmapswere
then simultaneously reconstructed usingmaximum-likelihood reconstruction of attenuation and activity
(MLAA) algorithm that requires solely the emission PET data (Rezaei et al 2012). High-quality gated attenuation
mapswere generated using a convolutional neural network (CNN) that was trained to predict a CT-derived
attenuationmap (μ-CT) fromMLAA activity and attenuationmaps (λ-MLAA andμ-MLAA) (Hwang et al
2018a, 2019a, Shi et al 2019). TheCNN-enhanced attenuationmap for each gating binwas used for the phase-
matched PET attenuation and scatter correction. The corrected gated-PET activity images were used for a
motion vector field estimation between the gating bins. Finally,motion-free PET images were generated using
the estimatedmotion vector field.

We trained theCNNby conducting a 3Dpatch-based learningwith 80 oncologic whole-body
18F-fluorodeoxyglucose (18F-FDG)PET/CT scan data and applied it to seven regional PET/CT scans that cover
the lower lung and upper liver—themost vulnerable regions to the respiratorymotion artifact.We further
investigated the impact of the proposed respiratory phase-matchedACof PETwithout utilizingCTon tumor
size and standard uptake value (SUV) assessment and PET image quality.

2.Materials andmethods

2.1.Data set
For training the network, whole-body 18F-FDGPET/CT scan data of 80 oncologic patients acquired using a
BiographmCT40 scanner (effective timing resolution=580 ps, SiemensHealthcare, Knoxville, TN)was
retrospectively usedwhichwas same training and validation set used in our previouswork (Hwang et al 2019b).
In the PET scans, the upper body fromhead to upper thighwas scanned in 6–8 bed positionswith a scan
duration of 1 min/bed.

Figure 1.Dataflow in the deep learning-based phase-matched attenuation correctionmethod proposed in this study.
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To evaluate the performance of the proposedmethod, the regional 18F-FDGPET/CT scan data of seven
oncologic patients (fivemale and two female, age=63.4±10.7 years) acquired using the same PET/CT
scannerwere used. Patients were asked to hold the breath at the end-of-expiration during theCT acquisition. In
these patients, listmode datawas collected for 5 min in a bed position that includes lower lung and upper liver of
each patient. The listmode datawere histogrammed into four gated-sinograms (1.25 min each) as shown in
figure 1. To generate the gated-sinograms, gating signals were estimated using a data-drivenmethod described in
the further section. Further, ungated sinogramswere generated by integrating the entire 5 min data. Details on
the data-driven gating are supplied in the next section.

For all the patients, PET/CT imagingwas performed 60 min after intravenously injecting the 18F- FDG (5.18
MBq kg−1). The retrospective use and prospective acquisition of the scan datawas approved by the Institutional
ReviewBoard of our institute and informed consent was obtained from all individual participants in this study.

2.2. Simultaneous image reconstruction
We reconstructed PETdata sets using theMLAAwith the TOF information (6 iterations and 21 subsets, 5mm
Gaussian post-filter) as described in our previouswork (Hwang et al 2019a). To resolve the non-unique global
scaling problem in theMLAA, the boundary constraint was applied during the attenuation image estimation in
theMLAA (Rezaei et al 2012). For scatter correction in theMLAA, scatter sinogramwas estimated fromμ-CT
using single scatter simulation (Watson et al 1996).

2.3.Data-driven respiratory signalmeasurement
TheCODalgorithm is a data-drivenmotion signal estimationmethod that requires no external device to
measure the respiratorymotion of patients (Ren et al 2017). Previous studies reported that the estimatedmotion
signal using theCODmethod corresponds well with the external device-basedmethods (Ren et al 2017, Feng
et al 2018). TheCOD indicates the center-of-mass of lines-of-response (LORs)measuredwithin a specific PET
field-of-view and time-bin. TheCOD is calculated as follows:

= å
C

Z

N
,z

i

whereZi is the center of LOR for each coincidence event in the axial direction andN is the total number of LORs.
To extract the respiratorymotion signal from the PET listmode data, a 100ms long time-binwas used. The z-
coordinate of COD (verticalmotion in coronal and sagittal planes)was considered as the internal organs (and
radiotracers within them) primarilymove up and down owing to the respiration.We incorporated TOF
information in theCOD signalmeasurement to improve the accuracy of theCODmethod (Ren et al 2017).

Owing to the limited number of LORsmeasured in a short time-bin, noise level of the rawCOD signal is
high. Therefore, a band-passfilter that preserves 0.06–0.50Hz frequency components was used for the rawCOD
signal to reduce statistical variation and baseline drift (Supplemental figure 2). From thefiltered COD signal,
breathing peakswere extracted to determine respiratory cycles. Each respiratory cycle (peak-to-peak)was
divided into four gatingwindowswith an even temporal length (figure 1). This phase-based gating approachwas
adopted in this study than the amplitude-based gating as the phase-based gating is insensitive to baseline drifts
and other inaccuracies in the signal (Dawood et al 2007).

2.4. Network architecture and training
TheCNNwas designed to predictμ-CT fromMLAAoutputs (μ-MLAA andλ-MLAA) that are noisy and subject
to crosstalk artifact (Hwang et al 2018a, 2019a). Inputs to theCNNwereμ-MLAA andλ-MLAA in the formof
32×32×32matrix patches, and labels (ground-truth)were patches of the same size fromμ-CT at the
corresponding location. As shown infigure 1 and Supplemental figure 1, we employed a 3DU-net-based
networkwith batch normalization. Certain convolutional layers preceded theU-net structure to reduce the
noise inλ-MLAAwhere a patch-based intensity normalization usingmean and variance of the patchwas
employed. No other preprocessing or normalization is applied onμ-MLAA. In the last layer that provides an
output, 1×1×1 convolutionwas used for scaling. Each convolution and deconvolution layer, except the last
layer, was composed of 3×3×3 kernels (supplemental figure 1). To prevent theCNN from learning
geometric and systematic artifacts from theμ-CT, 3Dpatches for training theCNNwere selected randomly
rather than selected from the regular gridwith even spacing. The 3Dpatcheswere employed for theCNN
training if their centers are included in the body to avoidmeaningless computationwith blank patches. In
addition, theMLAAoutputs from the full iteration (iteration 6) and intermediateMLAAoutputs from iterations
1–5were used as the training set for theCNN to bemore generalized and robust to various noise levels.
Consequently, approximately 7.5million patches were used for theCNN training.

To generate an output imagewith the trained network (μ-CNN), inferences from the input patches were
stacked into the imagematrix. As the inference for boundary voxels in a patch is not as accurate as that of the
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center, 16×16×16 voxels at the center of 32×32×32 voxels were used for generating theμ-CNN.The
cost function to train the networkwas L1-normbetween the network output andμ-CT. The cost functionwas
minimized using adaptivemoment estimation algorithm (Kingma andBa 2014). The size ofmini-batch for
accelerating the learning speed and improving the robustness in convergence was 64.

2.5. Additional activity image reconstruction
The gated-PET activity images were then reconstructed using an ordered-subset expectation-maximization
algorithm (3 iterations and 21 subsets)where theμ-CNNwas used for attenuation and scatter corrections. These
gated-PET activity images were used for generating amotion-free PET image as described in the following
section. For comparison, gated and ungated sinogramswere also reconstructed usingμ-CT.

2.6. Estimatingmotion vectorfield andnon-rigid registration
For non-rigid image registration andmotion-free image generation, we selected a gate bin (reference gate bin)
where theμ-CNN ismost similar to theμ-CT acquired at end-of-expirationwhile holding the breath. The
similarity wasmeasured usingDice similarity coefficient of the segmented lung regions inμ-CNNandμ-CT
(Aasheim et al 2015, An et al 2016). Themotion vector field from each gate bin to the reference binwas estimated
using Elastix software (Klein et al 2010). In the Elastix, a B-spline transform is used for themotion field
estimation, andmean squared errors between gate and reference bins areminimized using adaptive stochastic
gradient descent algorithm.Weused the logarithmof the PET activity images to estimate themotion vector field
to reduce the registration error due to the large dynamic range and high noise level of the gated-PET images.
Applying constraint on themotion vector fields bymasking on patient’s body prevented them fromdiverging
outside the body. Themaskwas the union (U) of binary images derived from gated and statics images by
applying intensity thresholds. This was clarified in the revisedmanuscript. Using the estimatedmotion vector
fields, the activity images reconstructed using theμ-CNN for all gate binswerewarped into the reference bin and
averaged to generate amotion-free PET image.

2.7. Image analysis
The attenuation coefficient of the lungs at the end-of-expiration and end-of-inspirationweremeasured on the
gatedμ-CNN.

To evaluate the impact of the proposedmethod on the tumor size and SUV assessment and PET image
quality, we drew volumes of interest (VOIs) on the PET activity images. VOIswere semi-automatically drawn on
24 suspected tumor regionswith amovement higher than 5mm in the seven patients by applying a threshold of
40%ofmaximumSUV in the tumor (SUVmax). The volume of VOIs (ml)was then calculated bymultiplying the
number of voxel in theVOIwith the volume of each voxel. SUV90%was determined by averaging the SUVof
voxels with higher SUV than 90%of SUVmax. Additional VOIswere drawn on the relatively uniform region on
the liver to evaluate%STD (the percentage ratio of standard deviation andmean value of PET activity in each
VOI). For the comparison, tumor volume, SUV90% and%STD in the gated PET images were also evaluated.

2.8. Comparisonwith other registration schemes
The proposed ‘post-reconstruction registration’ schemewas also compared to other schemes such as:

(1) Registration among attenuation-corrected gated PETusingCT

(2) Registration among attenuation-corrected gated PETusingMLAAwithout applying CNN

(3) Registration among non-attenuation-corrected gated PET

3. Results

3.1. Phase-matchedAC
Figure 2 shows theμ-maps generated using the originalMLAA and proposedmethod (μ-MLAA andμ-CNN,
respectively) from a 5min long ungated (left column) and 1.25 min long gated (middle columns) data. They
were comparedwithμ-CT, the ground-truth (right column). Positions and outlines of the upper liver inμ-
CNNs changed in accordancewith the gate bin like respiratorymotion (figures 2(a) and (b)). This implies that
the extracted respiratory signal properly divided the list-mode data. The ungated and gatedμ-CNNhad lower
noise levels and sharper boundaries thanμ-MLAA. The high fluctuation ofμ-values shown at both ends of axial
FOV in theμ-MLAAwas not observed in theμ-CNN. In addition, bone structures and soft organswere better
identified in theμ-CNN.
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The noise level in the gatedμ-CNNwas not inferior to that of the ungatedμ-CNNandμ-CT. In addition,
the boundaries of soft organs (e.g. kidneys)were better resolved in the gatedμ-CNN comparedwith the ungated
μ-MLAA andμ-CNN.The axial position of the liver dome in the ungatedμ-CNNwas different from theμ-CT
because CTwas acquired during breath-hold at the end-of-expiration, but the emission PETdatawere acquired
during the respiratory period (figure 2(b)). Contrarily, one of the four-gatedμ-CNNs always correspondedwell
with theμ-CT (e.g. Gate 0 infigure 2) and used as the reference gate bin for the followingmotion correction.
Figure 3 shows themaximum intensity projection images of the gated PET corrected for attenuation and scatter
using (A)μ-CT and (B) gatedμ-CNN. The banana artifact shown in the phase-mismatched CT-basedAC
(figure 3(a)) that is themost evident at the end of inspiration (yellow arrow) is not observed in the phase-
matched gatedμ-CNNapproach (figure 3(b)). The non-uniform activity in the stomach at the boundary
between fat and soft tissuewhich is observed in theCT-based AC at the end of inspiration (sky-blue arrow) is
alsomitigated by the gatedμ-CNN. The lung cancer lesions shown inμ-CTwere alsowell represented in the
gatedμ-CNN images (arrows infigure 4). In addition, changes in the lung attenuation coefficient according to
the respiratory phase were observed (figure 5(a)). At the end-of-inspiration, the lung volume is expected to be
greater than at the end-of-expiration. Because the totalmass of lung tissuemust be preserved, the lung density

Figure 2.Attenuationmaps generated usingMLAAbefore and after CNNenhancement (μ-MLAA andμ-CNN, respectively) in (a)
trans-axial and (b) coronal views. (c)Axial position (z) of the liver dome in each gate bin.

Figure 3.Maximum intensity projection images of the gated-PET corrected for attenuation and scatter using (a) phase-mismatched
ungatedμ-CT and (b)phase-matched gatedμ-CNN.
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and attenuation coefficients at end-of-inspiration are expected to be smaller than at end-of-expiration, which is
consistent withwhat Shaker et al (2004) reported.

The difference in the lung attenuation coefficient betweenμ-CT andμ-CNNat the end-of-expirationwas
less than 6% except for a case who yielded 11%difference (figure 5(b)).

3.2.Motion-free image generation
Infigure 6, 5min long ungated PET images are overlaid onCT. The ungated PET image that is conventionally
usedwithout phase-matchedAC andmotion compensation showed significant positionmismatch between
PET andCT in addition to themotion artifact at organ boundaries (figure 6(a)). However, these problemswere
mitigated by the proposed deep learning-based phase-matched ACwithout usingCT, followed by the non-rigid
motion correction (figure 6(b)).When an authorwho is a nuclearmedicine physician (ChoiHY) has examined
all the output ofmotion corrections, therewas no remarkable artificial creation of small lesionswith high
activity (i.e. false positives) or the suppression of signal (i.e. false negatives).

Themotion-free PET correctedwith attenuation and respiratorymotion using the phase-matched gatedμ-
CNN improved the lesion detectability and enhanced the uptake quantification for small tumors as shown in
figure 7 and Supplemental figure 3. In the conventional ungated PET images, tumors indicated by yellow arrows
were stretched along the axial direction due to the respiratorymotion.On the contrary, the tumors shown in the
proposedmotion-free PET images featured smaller size and higher activity. The results of the quantitative
analysis on the%STD, SUV90%, and tumor size are plotted infigure 8. By employing the proposedmethod, the

Figure 4. Lung cancer lesions and theirmovement according to respiratory phase observed in (a) gated PET and (b) phase-matched
gatedμ-CNN in end-of-expiration and end of inspiration. (c)μ-CT.

Figure 5. Lungmeasurements inμ-CNN.Changes in (a) attenuation coefficient between end-of-expiration (EE) and end-of-
inspiration (EI). (b)Bland-Altman plot formean lung attenuation coefficient of phase-matched gatedμ-CNNandμ-CT at the end-
of-expiration.
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Figure 6.Mitigated respiratorymotion artifact and PET/CTmismatch obtained by the proposedmethod. (a)Conventional ungated
PETwithout phase-matched attenuation correction andmotion compensation. (b)Motion-free PET corrected for attenuation and
respiratorymotion using phase-matched gatedμ-CNNand data-drivenmotion-trackingmethod.

Figure 7. Improved lesion detectability and enhanced uptake quantification of the proposedmethod. (a)Conventional ungated PET
without phase-matched attenuation correction andmotion compensation. (b)Motion-free PET corrected for attenuation and
respiratorymotion using phase-matched gatedμ-CNNand data-drivenmotion-trackingmethod.

Figure 8.Change of%STDof liver uptake, SUV90% in tumor, and tumor volume by employing the proposed phase-matched
attenuation correction and respiratorymotion correction comparedwith ungated PET. Incremental change is colored red and the
contrary is colored blue.
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tumor sizemeasurement was reduced by 12.3% and SUV90%was increased by 13.3% in tumorswith higher
movements than 5mm.On the other hand, the tumor sizemeasurement was reduced by 11.3% and SUV90%was
increased by only 1.8% in reference gated PET. In the uniform region in the liver,%STDwas reduced by 11.1%
in the proposedmethodwhile the reference gated PET showed 120% increase in%STD.

3.3. Comparisonwith other registration scheme
Figure 9 shows themotion-free images generated by applying different post-reconstruction registration schemes
in a representative case. The anatomicalmismatch inCT-based AC resulted in the banana artifact (blue arrow).
The liver activity in the originalMLAA approachwithout applying CNNwas significantly higher than that of
proposed andCT-based approaches.

4.Discussion

Patientmotion correctionwithout an externalmotion-tracking device is one of themost active research areas of
PET imaging becausewearing fiducialmarkers or Anzai belt formotion tracking is time-consuming and
uncomfortable (Slipsager et al 2019). TheCODmethod employed in this study is a promising approach to the
device-less estimation of linearmotion (Ren et al 2017). In this study, the verticalmotion of internal organs in
the chest and abdomen owing to the respirationwas estimated using theCODmethod enhanced by TOF
information and band-pass filtering. The estimatedCOD signal was useful for the phase-based gate-binning of
the list-mode data. Although the phase-based gating yields uniform statistical noise characteristics andMLAA
reconstruction performance across the gating bins (figures 2 and 3), thismethodwould be less robust than the
amplitude-based approach to the patients with irregular breathing. Further investigation on the impact of the
gatingmethods onMLAA estimation, CNN-filtering, andmotion-free PET generationwill be necessary.

One of the limitations of this study thatwe conducted theMLAA reconstructionwith the scatter distribution
estimated fromμ-CT. Iterativemethods to estimate the scatter distribution during theMLAA reconstruction
were recently proposed (Rezaei et al 2019, Li et al 2020). However, the additional computation time required for
the repeated scatter estimationwould hinder their practical use. One of themore practical wayswe are
considering is the deep learning-based scatter estimation incorporated into theMLAA.

Also, the lack of a convincing gold standard is themain limitation of this proof-of-concept study. Either
breath-hold PETwhich is hard for standard PET systems or a high count single-gated reference is amore
convincing gold standard. In addition, a dynamic CT rather than a breath-holdCT can offer a goodmeans to
assess the deformedCTmap.

Another limitation is that ungated PET andCT imageswere used for theCNN training thatwas applied to
the gated PET data. Becausewe performed patch-based learning,major data used for the network training came
fromother regions rather than lung and upper liver that are vulnerable to the positionmismatch due to
respiration in ungated PET/CT (Hwang et al 2019a, 2019b). In addition, the noise level of gated PET tested in
this studywould be similar to the training data set because the scan times for each frame of the gated PET and
ungated PETwere 1.25 and 1.0 min, respectively.

The small number of respiratory-gated PET scan datasets used for the performance evaluation of the
proposedmethod is another limitation of this study. Because it is quite small to produce sufficient evidence of
themethodworkingwell and systematically onmany occasions, further investigations with a larger number of
subjects are necessary.

In almost allmedical image processing topics including segmentation, registration, and restoration, the deep
learningmethod is rapidly implemented (Choi 2018, Gong et al 2018, Kang et al 2018, Kim et al 2018, Park et al
2018, Guo et al 2019,Hegazy et al 2019, Kale et al 2019, Lee et al 2019, Lee 2021). AC of PETusing pseudo-CT
transformed frommagnetic resonance imaging (MRI) is one of themost active deep learning research topics in
medical image generation (Liu et al 2017, Leynes et al 2018, Arabi et al 2019, Bradshaw et al 2018, Spuhler et al

Figure 9.Comparison of post-reconstruction registration schemes using different attenuation correctionmethods.
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2019, Torrado-Carvajal et al 2019). However, the primary disadvantage of theMRI-based PETAC is that
convertingMRI toCTusing deep learningmay not be physically and biologically relevant as the physical
quantitymeasured by the twomodalities is not closely related (Vandenberghe andMarsden 2015, Yoo et al 2015,
Lee 2021). Our deep learning-based enhancement of the attenuationmap reconstructed using simultaneous
PET activity and attenuation reconstruction algorithm, such asMLAA,would have better rationale thanMRI-
based approaches as this approach does not rely on cross-modal image transform (Hwang et al 2019a).
Moreover, our approach has been validated for several PET radiotracers including 18F-FDG, 18F-FP-CIT, and
68Ga-DOTATOC (Hwang et al 2018a, 2019a, 2019b). This approach has been used to combine the attenuation
maps fromMLAA andDixonMRI (Hwang et al 2018b). Thus, this attenuationmap has the potential to replace
theMRI-basedAC for future generations of TOFPET/MRscanners (Hwang et al 2018a).

Further, we showed that our approach to enhance theMLAA attenuationmap using a deep learning
techniquewas useful for the phase-matchedAC in the respiratory gating PET. The improved attenuationmap
can also be effective in improving the performance of other simultaneous reconstruction based data-driven
motion correctionmethods (Lu et al 2018). The phase-matched AC is regarded necessary but impractical
because of the increased radiation dose from the gated-CT. Although not proven, our approach has the potential
to be superior to the gatedCT-based phase-matched AC. This is because the patientmotion and different
breathing patterns between PET andCT scans can cause another type of positionmismatch artifact in a gated-
CTbased approach (Lu et al 2018,Nehmeh et al 2004a).

Deep learning-based approaches, even if they can produce impressive results, need to be evaluated
rigorously becausewe don’t have to trust themunless clearly explained (Antun et al 2020). However, it is
impossible to validate a deep learning-based approach using all possible different datasets. One of the efforts we
havemade to ensure the stability of the proposedmethod is the sanity checkwe performed in the previous work
(figure 5 inHwang et al 2019b). In addition, the attenuationmaps generated usingMLAA andCNNenabled
more accurate AC in patients withmetallic implants (figure 30 in Lee 2021). Although training set includedCT
imageswithmetal artifacts, CNNwas not susceptible to themetal artifacts.

In this study, CNN trained and validatedwith ungated PETdata performedwell with the gated PET data.
There is concern that CNNmay learn the systematicmismatches betweenMLAA andCT at the lung and liver
boundaries. However, The number of unmatched patch is relatively small, which prevents the CNN from
learning themismatch. The relatively large difference between the activity images corrected for attenuation
usingμ-CNNandμ-CT at the lung and liver boundaries shown in our earlier work (figure 6 inHwang et al
2019b) supports this idea.

There is an impact ofmotion in PETquantification not only due to themismatch of emission and
attenuation and but also because of the attenuation value changewith respiration (Shaker et al 2004,Holman
et al 2016). Our proposed phase-matched attenuationmaps also showed the change in attenuation coefficients
(figure 5(a)). The difference between the gatedμ-CNNat the end-of-expiration andμ-CTwas less than 6%
except for a case. In the exceptional case with 11%difference, only a small portion of the lungs (approximately
10%volume)was included in the PET image, leading to the statistical variation inμ-value calculation.

The gated activity images corrected for attenuationwith phase-matched attenuationmaps using the
proposedmethodwere integrated after the non-rigid registration to generatemotion-free PET (Polycarpou et al
2012, Tsoumpas et al 2013). Themotion-free PET allows for better SNR and lesion detectability than the gated-
PET that includes a smaller number of PET counts. The image-registration basedmotion-free image generation
is not a new approach.However, the anatomical image-guided PETmotion correction has been rarely
investigated in PET/CTbecause of the lack of gated-CT. Therefore, utilizing the gated activity and attenuation
maps together formotion vector field estimationwould be an approach that can achievemore robustmotion
correction. Furthermore, we should evaluate the feasibility of the proposedmethod in gated and dynamic
cardiac PET scans.

5. Conclusion

Wehave developed a deep learning-based data-driven respiratory phase-matched ACmethod. As theCOD
method enables successful extraction of respiratory signals and theCNNgenerates high-quality phase-matched
attenuationmaps fromMLAAoutputs, the proposedmethod improved the PET image quality whilemitigating
themotion artifacts.
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