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Abstract
Although MR-guided radiotherapy (MRgRT) is advancing rapidly, generating accurate synthetic CT (sCT) from MRI is still 
challenging. Previous approaches using deep neural networks require large dataset of precisely co-registered CT and MRI 
pairs that are difficult to obtain due to respiration and peristalsis. Here, we propose a method to generate sCT based on deep 
learning training with weakly paired CT and MR images acquired from an MRgRT system using a cycle-consistent GAN 
(CycleGAN) framework that allows the unpaired image-to-image translation in abdomen and thorax. Data from 90 cancer 
patients who underwent MRgRT were retrospectively used. CT images of the patients were aligned to the corresponding 
MR images using deformable registration, and the deformed CT (dCT) and MRI pairs were used for network training and 
testing. The 2.5D CycleGAN was constructed to generate sCT from the MRI input. To improve the sCT generation perfor-
mance, a perceptual loss that explores the discrepancy between high-dimensional representations of images extracted from 
a well-trained classifier was incorporated into the CycleGAN. The CycleGAN with perceptual loss outperformed the U-net 
in terms of errors and similarities between sCT and dCT, and dose estimation for treatment planning of thorax, and abdo-
men. The sCT generated using CycleGAN produced virtually identical dose distribution maps and dose-volume histograms 
compared to dCT. CycleGAN with perceptual loss outperformed U-net in sCT generation when trained with weakly paired 
dCT-MRI for MRgRT. The proposed method will be useful to increase the treatment accuracy of MR-only or MR-guided 
adaptive radiotherapy.

1 Introduction

In radiation therapy, radiation should be delivered accu-
rately to the planning target volume (PTV) to eliminate 
cancer while simultaneously delivering minimal radiation 
to unwanted areas to prevent side effects. Therefore, accu-
rate delineation of target and normal tissues is essential, 
and computed tomography (CT) is primarily used for target 
localization and organ contouring in radiotherapy planning.

Magnetic resonance imaging (MRI) is increasingly used for 
radiotherapy planning because of its superior soft-tissue con-
trast compared to CT, which facilitates tumor and organ-at-risk 
(OAR) delineation. However, dose estimation based solely on 
MR images is challenging because MR images do not provide 
direct information on electron density. Therefore, additional 
CT scans of patients are acquired and co-registered with MRI 
for the MR-guided radiotherapy (MRgRT) systems, including 
MR-Linac, which causes unnecessary radiation exposure and 
extra cost to patients. Dose estimation error due to spatial mis-
registration and temporal changes in anatomy between MRI 
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and CT is another drawback of the co-registered CT-based 
approach [1].

Recently, considerable research interest has been directed 
toward the direct conversion of MRI into synthetic CT (sCT) 
based on deep learning (DL) approaches to overcome the 
drawbacks of co-registered CT. Previous studies using the 
DL method for MRI-to-CT translation employed supervised 
learning models that are easy to train but generally produce 
blurry output images [2–8]. The most commonly used neural 
network for MRI-to-CT translation is the U-net architecture, 
an encoder–decoder network with skip connections trained 
in a discriminative manner [9]. In contrast, the incorporation 
of generative models usually provides more realistic output 
images than discriminative models. One of the approaches 
to generative modeling is the generative adversarial network 
(GAN) in which generator and discriminator networks are 
trained simultaneously through min–max optimization [10]. 
In several recent studies on sCT generation from MR images, 
GANs that utilize adversarial feedback from a discrimina-
tor network have shown superior performance than the cor-
responding U-nets [11–14]. However, previous approaches 
using GANs were based on paired image-to-image transla-
tion, requiring a large dataset of precisely co-registered CT 
and MRI pairs that are difficult to obtain due to respiration 
and peristalsis in thorax and abdomen. In addition, there are 
a limited number of studies on generating MR-based sCT for 
MRgRT systems [15, 16]. The datasets used in previous stud-
ies are also limited to the head, neck, pelvis, and liver.

Therefore, in this study, we propose a method to generate 
sCT based on DL training from weakly paired CT and MR 
images acquired from the MRgRT system using a cycle-con-
sistent GAN (CycleGAN) framework that allows unpaired 
image-to-image translation [17–20]. The proposed CycleGAN 
method has been applied to the head and neck or the pelvis area, 
but as far as we know it has not been applied to the abdomen 
and thorax [18, 21]. To improve the sCT generation perfor-
mance, a perceptual loss that explores the discrepancy between 
high-dimensional representations of images extracted from a 
discriminator was incorporated into the CycleGAN. In addi-
tion, the weakly paired dataset included CT and MR images 
of the pelvis, thorax, and abdomen to prevent the overfitting 
of networks from being specialized in a specific area. The sCT 
generation performance of CycleGAN was compared with 
U-net, and the dose estimation accuracy was evaluated using 
the treatment planning system (TPS) of the MRgRT system.

2  Methods and materials

2.1  Data acquisition and preprocessing

Data from 90 cancer patients who underwent MRgRT 
were retrospectively used. The retrospective use of the 

scan data and waiver of consent were approved by the 
Institutional Review Board of our institute. The patient 
data were divided into three groups according to the treat-
ment region: pelvis (n = 30), thorax (n = 30), and abdomen 
(n = 30). Detailed patient characteristics are provided in 
Supplementary Table 1.

CT simulation scans of all patients were acquired using 
the Brilliance Big Bore CT scanner (Philips, Cleveland, 
OH). Fifteen minutes after the CT scan, MR images were 
acquired using a 0.35 T MRI scanner combined with the 
radiation therapy unit of the MRIdian MRgRT system 
(ViewRay, Oakwood, OH). The MRI scans were per-
formed in the same patient setup as the CT simulations 
using true fast imaging with steady-state precession (True-
FISP; TRUFI) sequence. Thereafter, the CT images were 
co-registered with the corresponding MR images using 
a deformable registration algorithm, provided by Vie-
wRay TPS. The deformed CT (dCT) images were resa-
mpled to have the same dimensions as the MRI images 
(320 × 320 × 144). A dataset with mismatched body and 
organ boundaries on the co-registered CT and MRI were 
not included in the data of the 90 patients. The low-fre-
quency intensity and non-uniformity present in MRI were 
corrected using the N4 bias field correction algorithm 
[22].

Of the 90 MR–dCT image pairs, 80% (72 pairs) were 
used for network training and the remaining 20% (18 pairs) 
were used for testing and validation. To avoid 3D discon-
tinuities in sCT, 2.5D data consisting of three adjacent 
slices were provided to the network. The intensity of the 
images was normalized using the 95% percentile value 
of the intensity peak of each image to enable effective 
network training.

2.2  Network architecture

As mentioned previously, two different deep learning net-
works, U-net and CycleGAN, were used for sCT genera-
tion. Figure 1 shows the procedures for image processing/
analysis and network training/testing, and Supplementary 
Fig. 1 shows the detailed structure of the deep learning 
networks. For U-net, the standard network architecture 
used in Noise2Noise paper [23] was modified. The input 
and output of the U-net are MRI and sCT, respectively, 
and the ground truth is dCT. The network consisted of 17 
convolutional layers containing a convolution and a leaky 
rectified linear unit (ReLU) activation function, as shown 
in Supplementary Fig. 1.b. The filter numbers for these 
layers were 64, 64, 128, 256, 512, 1024, and 1024 in the 
encoder for down-sampling, and 1024, 1024, 512, 512, 
256, 256, 128, 128, 64, and 64 in the decoder for up-sam-
pling. The weights and biases in the layers were trained 
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by minimizing L1 loss, the mean absolute error (MAE) 
between the sCT and dCT. The network was trained for 
200 epochs using an adaptive stochastic gradient descent 
optimizer (Adam) with a learning rate of 0.0001.

The CycleGAN consisted of two generators (G1 and G2) 
and two discriminators (D1 and D2), as shown in Supple-
mentary Fig. 1.a. The U-net described above was used as 
the generator. The discriminators consisted of five residual 
neural network (ResNet) blocks [24] followed by global 
average pooling layer (Supplementary Fig. 1.b). The genera-
tors produce synthetic images, and discriminators determine 
whether the synthetic images are real or fake by minimizing 
the following loss functions:

where LGAN is the GAN loss that generates a real-like desired 
image, Lcyc is the cyclic loss enforcing that the output of the 
generator is similar to the input, and Lid is the identical loss 
that stabilizes the training.

Deformable registration is nearly accurate for bones, 
but it is not perfect for non-rigid structures areas. There-
fore, we have complemented fidelity loss between the 
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LcycGAN = LGAN + 100 × Lcyc + 10 × Lid,

generator output and the dCT with perceptual loss in the 
discriminator’s view. Perception loss is used to minimize 
high-level differences, such as content and style discrep-
ancies between the generated and input images. The sum 
of L2 norm of the features in ResNet blocks 1, 2, and 3 of 
the discriminators was calculated as the perceptual loss, 
and spectral normalization was applied to each layer to 
stabilize the discriminator training [25]. Accordingly, the 
perceptual loss and total loss can be described as follows:

where n is the batch size and �⋅

i
 is the i-th ResNet block used 

to calculate the perceptual loss, which was extracted from 
each discriminator.

The number of the batch size and learning rate of the 
generator were 1 and 0.0001, respectively. We used the 
two time-scale update rule to assign different learning 
rates to generators and discriminators [26]. The learn-
ing rate of the discriminators was four times higher than 
that of the generators. The Adam optimization algorithm 
(β1 = 0.5 and β2 = 0.99) was used to minimize the above 
losses. All models were implemented using TensorFlow 
and trained on an NVIDIA Geforce GTX 1080Ti with 
11 GB of memory.
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Fig. 1  Image analysis proce-
dures
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2.3  Image analysis and treatment planning

As previously mentioned, 18 of 90 MR–dCT image pairs 
were randomly selected as the test set. To assess the accu-
racy of the image translation for the test set, the MAE, 
root mean square error (RMSE), peak signal-to-noise ratio 
(PSNR), and structural similarity (SSIM) between the sCT 
generated from the pre-processed MRI using the deep neural 
networks and the dCT were calculated as follows:

where i is a voxel within the body, N is the total number of 
voxels, and MAX is the maximum voxel value of the refer-
ence image.

We also analyzed the dosimetric accuracy of the use of 
sCT images based on the MRIdian treatment planning sys-
tem used for the Co-60 ViewRay system. The dose distribu-
tion was recalculated by replacing dCT with sCT images 
under the same beam parameters as the original dCT treat-
ment plan. The Monte Carlo simulation with magnetic-field 
correction was performed to calculate the dose distribution 
with a calculation grid size of 3 mm. The prescription dose 
to the PTV was not the same for all patients. To evaluate the 
dose distribution under the same condition, the dose dis-
tribution map was scaled to correspond to the prescription 
dose of 70 Gy for the pelvis, 38.5 Gy for the thorax, and 
50 Gy for the abdomen. To compare the dose distributions 
estimated using the sCT and dCT, several dose-volume his-
togram (DVH) parameters, such as minimum (Dmin), maxi-
mum (Dmax), and mean (Dmean) absorbed doses for the PTV 
and OARs, were calculated. For the PTV area, D98%, D2%, 
and V100% were also calculated to assess the homogeneity 
and conformity of the dose distribution. Spatial dose distri-
butions were also compared using 3D gamma analysis under 
2%/2 mm and 3%/3 mm (dose discrepancy/distance agree-
ment) criteria with 10, 50, and 90% thresholds.

All statistical analyses were performed using SPSS soft-
ware. Wilcoxon signed-rank tests were used to compare 
the performance of the U-net and the proposed CycleGAN 
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models. P values less than 0.05 were considered statistically 
significant.

3  Results

Figure 2 shows the representative case of the generated sCT 
slices exhibited with the corresponding MR and dCT slices 
in the pelvis, thorax, and abdomen. The sCT generated using 
CycleGAN  (sCTCyGAN) showed sharper boundaries than the 
sCT generated using the U-net  (sCTU-net). In addition, sCT 
showed better similarity to dCT in dense structures such 
as the pelvic bones and spine. The location and size of air 
pockets shown in the abdomen images are more accurate in 
sCT than in dCT (yellow ellipses).

The MAE, RMSE, PSNR, and SSIM between the dCT 
and sCT images calculated from the test set data are summa-
rized in Table 1. In general,  sCTCyGAN showed smaller errors 
(MAE and RMSE) and higher similarities (PSNR, SSIM) 
relative to dCT than  sCTU-net. The error and similarity dif-
ferences between CycleGAN and U-net were considerably 
large in the thorax and abdomen.

Figure 3 and Table 2 show the superiority of  sCTCyGAN 
over  sCTU-net in dose estimation for treatment planning. 
The treatment dose distribution and DVHs for the PTV and 
OARs generated using dCT and sCTs for a representative 
abdomen case are shown in Fig. 3. In this case, dCT and 
sCTs yield very similar isodose curves, as shown in Fig. 3a. 
The left column of Fig. 3b shows the significant DVH differ-
ence between dCT and  sCTU-net, which is largest in the PTV. 
On the other hand, dCT and  sCTCyGAN produce virtually 
identical DVHs, as shown in the right column of Fig. 3b. 
DVH parameters for the PTV and OARs in each region are 
summarized in Table 2.

Figure 4 shows the average gamma passing rates between 
dCT and sCTs using 2%/2 mm and 3%/3 mm criteria at 
three different threshold levels. The gamma passing rate of 
cycleGAN exceeded 97%, except for 90% threshold in the 
abdomen. On the other hand, the U-net’s gamma passing 
rate exceeded 90% in all areas only at 3 mm/3% criteria 
with a 10% threshold, and was less than 90% when threshold 
increased or 2 mm/2% criteria was applied (see Supplemen-
tary Table 2 for detailed results).

4  Discussion

Although MRgRT technology is advancing rapidly, gener-
ating accurate sCT from MRI is still an unsolved problem. 
Deep learning technology is also advancing rapidly, and 
image-to-image translation technology based on deep learn-
ing is being applied in various fields, including sCT gen-
eration from MRI [27–32]. However, most of the previous 
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studies focused on generating sCT from diagnostic MRI, 
and in these studies, conventional TPS was used for dose 
calculation [3–5]. On the other hand, in our study, we gener-
ated sCT by applying deep learning models to low-field MR 
images used in the actual MRgRT system. The 0.35 T MRI 
images produced in the MRIdian MRgRT system exhibit dif-
ferent relaxation properties and image contrast than 1.5 T or 

3 T MR images used for diagnostic purposes [33]. Further-
more, the MRIdian MRgRT system uses a TRUFI sequence 
that creates T2/T1 contrast that is different from the general 
T1 or T2 contrast [34].

Unlike most previous studies in which deep neural net-
works were trained using only data from a specific area, 
this study trained neural networks using all pelvis, thorax, 
and abdomen images to increase the performance and gen-
erality of the trained neural network. The main advantage 
of MRgRT is the application of real-time respiratory gat-
ing technology and the accurate identification of treatment 
targets based on the high soft-tissue contrast of MRI [35]. 
In this regard, it is particularly important to increase the 
accuracy of sCT generation in the thorax and abdomen areas 
that are heavily affected by respiration and inter- and intra-
fraction movements [36]. However, there are limited studies 
that deal with the translation from MRI to CT of the thorax 
and abdomen because it is difficult to generate perfectly 
matched datasets due to changes in the shape and location 
of the non-rigid organs and air pockets.

U-net has shown superior performance in many image-
to-image translation tasks [30, 31, 37–39]. However, this 
representative discriminative learning model has limited 
performance when trained with incomplete matched data-
sets, as shown in this study. To alleviate the incomplete 

Fig. 2  Transverse slices of MRI, dCT,  sCTU-net, and  sCTcGAN in representative cases

Table 1  Errors (MAE and RMSE) and similarities (PSNR, SSIM) 
relative between sCT and dCT in the test group

MAE Mean absolute error, RMSE Root mean square error, PSNR 
Peak signal-to-noise ratio, SSIM Structural similarity

Pelvis (n = 6) Thorax 
(n = 6)

Abdomen 
(n = 6)

Total (n = 18)

U-net
MAE 56.3 ± 9.3 134 ± 27.8 150 ± 55.4 114 ± 54.7
RMSE 104 ± 7.0 168 ± 27.3 172 ± 22.9 148 ± 33.9
PSNR 27.9 ± 0.6 23.0 ± 1.7 22.9 ± 3.1 24.6 ± 3.1
SSIM 0.87 ± 0.04 0.89 ± 0.01 0.91 ± 0.01 0.89 ± 0.03
CycleGAN
MAE 55.3 ± 5.5 63.7 ± 3.8 58.8 ± 4.4 59.2 ± 5.8
RMSE 118 ± 9.3 119 ± 8.4 113 ± 9.3 117 ± 9.4
PSNR 26.8 ± 0.7 25.9 ± 0.5 26.3 ± 0.7 26.3 ± 0.7
SSIM 0.89 ± 0.05 0.90 ± 0.02 0.91 ± 0.01 0.90 ± 0.03
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matching problem, this study introduces CycleGAN that 
utilizes the flexible translation capabilities offered by the 
generative model structure [40]. The sCT generation perfor-
mance was further improved by considering the perceptual 
loss that allows us to retain high-level features compared 
to pixel-wise loss, such as L1 or L2, which produce local 
smoothing [41] (Supplementary Fig. 2). Consequently, the 

CycleGAN using perceptual loss outperformed the U-net in 
terms of errors and similarities between sCT and dCT in the 
thorax and abdomen (Table 1). The dosimetric robustness 
of the proposed CycleGAN was also proven through gamma 
analysis (Fig. 4). In a previous study [14], conditional GAN 
with perceptual loss performed better than U-net in sCT 
generation from the MRI of patients with prostate cancer. 

Fig. 3  Dosimetric comparison 
between dCT and sCTs in the 
abdomen. a Dose distribution 
and isodose curves. Each color 
contour shows the isodose line 
(see right legends). b Left: 
Comparison of dose volume 
histogram for PTV and OARs 
(stomach, duodenum, and liver) 
between dCT and sCT using 
U-net Right: Comparison of 
dose volume histogram for PTV 
and OARs between dCT and 
sCT using cycleGAN. Dashed 
line indicates the result of dCT 
and the solid line shows the 
result of sCT methods

Table 2  Comparison of dose-Volume histogram (DVH) parameters between dCT and sCTs

The Wilcoxon test was used to compare the dose volume parameters between dCT and sCT. Significant differences were considered at p < 0.05* 
and p < 0.1**

Pelvis Thorax Abdomen

dCT sCTU-net sCTcGAN dCT sCTU-net sCTcGAN dCT sCTU-net sCTcGAN

PTV
Dmean 73.9 ± 0.7 75.6 ± 0.6* 74.0 ± 0.7 40.1 ± 0.6 40.8 ± 0.8 40.2 ± 0.6 50.5 ± 2.1 54.1 ± 3.0** 50.3 ± 1.5
Dmin 63.8 ± 2.1 66.3 ± 3.6 63.9 ± 2.3 35.3 ± 1.7 35.0 ± 2.0 35.2 ± 1.7 45.2 ± 2.2 48.7 ± 3.2 45.1 ± 2.5
Dmax 78.7 ± 1.3 80.3 ± 1.3* 78.8 ± 1.5 42.5 ± 1.4 43.5 ± 1.7** 42.6 ± 0.9 54.1 ± 1.2 57.5 ± 3.4** 53.3 ± 0.9
D98% 68.6 ± 1.0 69.9 ± 1.3 68.6 ± 1.0 37.7 ± 0.9 37.8 ± 0.9 37.7 ± 1.0 49.3 ± 0.2 49.7 ± 3.4 48.8 ± 0.2*
D2% 76.9 ± 1.1 78.5 ± 1.0* 77.1 ± 1.0 41.9 ± 1.3 42.8 ± 1.6 41.9 ± 1.4 53.5 ± 0.6 56.4 ± 3.1 53.1 ± 0.6
V100% 77.5 ± 18.8 79.2 ± 19.0 77.8 ± 19.1 89.6 ± 27.8 92.5 ± 29.2 89.6 ± 27.6 36.1 ± 13.0 32.0 ± 12.4 34.2 ± 12.1
OAR Bladder Heart Duodenum
Dmean 47.3 ± 3.7 47.9 ± 3.6 47.4 ± 3.7 3.1 ± 0.7 3.2 ± 0.8 3.0 ± 0.7 26.1 ± 8.9 27.4 ± 9.6 25.9 ± 8.9
Dmin 20.0 ± 10.5 20.1 ± 10.5 20.0 ± 10.4 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 5.4 ± 5.1 5.5 ± 5.3 5.5 ± 5.2
Dmax 75.8 ± 1.6 77.0 ± 2.1 75.7 ± 1.4 19.0 ± 10.9 19.3 ± 10.9 19.0 ± 10.9 49.4 ± 4.1 52.7 ± 5.1 46.7 ± 6.5
OAR Rectum Left lung Stomach
Dmean 43.2 ± 6.1 43.7 ± 6.0 43.1 ± 6.2 1.6 ± 0.3 1.7 ± 0.3 1.6 ± 0.3 15.2 ± 5.1 15.7 ± 5.3 15.2 ± 5.1
Dmin 16.6 ± 8.0 16.5 ± 8.0 16.5 ± 7.9 0.2 ± 0.03 0.2 ± 0.04 0.2 ± 0.03 2.1 ± 1.6 2.2 ± 1.7 2.1 ± 1.7
Dmax 76.1 ± 1.7 76.9 ± 2.0 75.4 ± 1.3 9.1 ± 4.9 9.3 ± 4.7 8.9 ± 4.6 45.5 ± 5.2 47.1 ± 5.7 45.1 ± 5.4
OAR Femur head Right lung Liver
Dmean 25.5 ± 6.7 25.8 ± 6.8 25.5 ± 6.7 6.4 ± 1.4 6.5 ± 1.4 6.3 ± 1.4 8.3 ± 5.3 8.7 ± 5.5 8.3 ± 5.3
Dmin 10.8 ± 6.0 11.1 ± 6.1 11.0 ± 6.1 0.2 ± 0.08 0.2 ± 0.07 0.2 ± 0.07 0.7 ± 0.3 0.8 ± 0.4 0.7 ± 0.4
Dmax 44.6 ± 7.4 45.0 ± 7.9 44.5 ± 7.9 40.1 ± 1.1 40.9 ± 0.8 39.9 ± 0.9 44.5 ± 8.9 47.4 ± 10.7 43.9 ± 8.8
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However, the incorporation of perceptual loss in conditional 
GAN could not reduce MAE and improve the dose calcula-
tion accuracy, maybe because their dataset was limited to 
the pelvic area.

Recently, online MR-guided adaptive radiotherapy 
(MRgART) has been proposed to address anatomical 
changes in PTV and OARs during the treatment period 
[42]. In addition, a clinical trial called stereotactic MRI-
guided on-table adaptive radiation therapy (SMART) for 
the pancreatic area is ongoing [43, 44]. However, changes 
in the air pocket position during MRgART cause signifi-
cant differences in dose distribution [44]. To address this 
problem, in the current MRgART protocol, air pockets and 
body surfaces are recontoured in the dCT while referring to 
the MRI acquired daily, and correct electron densities are 
assigned to air and soft tissues, thereby increasing the time 
the patient is on the table. Therefore, improved sCT genera-
tion enabled by applying the proposed method will increase 
the accuracy of treatment planning and the convenience of 
patients in MRgART.

This study has some limitations, including a small num-
ber of datasets used for training and validating the network 
models. The accuracy of the sCT can be further improved 

by adding the MRI obtained daily for each fractionation 
and reducing the variability in MRI intensity through white 
stripe normalization [8, 45]. In addition, adding segmented 
bone regions from CT as input to networks will also improve 
the accuracy of sCT.

5  Conclusions

CycleGAN with perceptual loss outperformed U-net in sCT 
generation when trained with weakly paired dCT–MRI for 
MRgRT in abdomen and thorax. This approach will be use-
ful to increase the treatment accuracy of MR-only radio-
therapy and MRgART.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13534- 021- 00195-8.
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