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Abstract

Inter-crystal scattering (ICS) is a type of Compton scattering of photons from one crystal to adjacent
crystals and causes inaccurate assignment of the annihilation photon interaction position in positron
emission tomography (PET). Because ICS frequently occurs in highly light-shared PET detectors, its
recovery is crucial for the spatial resolution improvement. In this study, we propose two different
convolutional neural networks (CNNG) for ICS recovery, exploiting the good pattern recognition
ability of CNN techniques. Using the signal distribution of a photosensor array as input, one network
estimates the energy deposition in each crystal (ICS-eNet) and another network chooses the first-
interacted crystal (ICS-cNet). We performed GATE Monte Carlo simulations with optical photon
tracking to test PET detectors comprising different crystal arrays (8 x 8to21 x 21)with lengths of
20 mm and the same photosensor array (3 mm 8 x 8 array) covering an area of 25.8 x 25.8 mm?. For
each detector design, we trained ICS-eNet and ICS-cNet and evaluated their respective performance.
ICS-eNet accurately identified whether the events were ICS (accuracy > 90%) and selected interacted
crystals (accuracy > 60%) with appropriate energy estimation performance (R* > 0.7)inthe 8 x 8,
12 x 12,and 16 x 16 arrays. ICS-cNet also exhibited satisfactory performance, which was less
dependent on the crystal-to-sensor ratio, with an accuracy enhancement that exceeds 10% in selecting
the first-interacted crystal and a reduction in error distances compared when no recovery was applied.
Both ICS-eNet and ICS-cNet exhibited consistent performances under various optical property
settings of the crystals. For spatial resolution measurements in PET rings, both networks achieved
significant enhancements particularly for highly pixelated arrays. We also discuss approaches for
training the networks in an actual experimental setup. This proof-of-concept study demonstrated the
feasibility of CNNs for ICS recovery in various light-sharing designs to efficiently improve the spatial
resolution of PET in various applications.

1. Introduction

Positron emission tomography (PET) systems visualize in vivo distributions of positron-emitting
radiopharmaceuticals by reconstructing tomographic images from the lines-of-response (LORs) measured
alongback-to-back 511 keV annihilation photon pairs (Phelps 2000, Ametamey et al 2008). The accurate
estimation of the annihilation photon interaction positions within the PET detectors is directly related to the
accurate drawing of LORs, which is crucial for improving the reliability of PET measurements. A traditional
method for achieving a high resolution in PET is using pixelated scintillation crystals (Kwon et al 2011, Yoon et al
2012, Grantetal 2016, Cherry et al 2018, Van Sluis et al 2019, Son et al 2020). Recently, monolithic crystals have
achieved reasonable positioning accuracies (Gonzalez-Montoro et al 2017, Borghi et al 2018, Krishnamoorthy
etal 2018). The spatial blurring in the peripheral region of the PET field-of-view can be reduced with the ability
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Figure 1. Schematic of PE and ICS of 511 keV annihilation photons in PET detectors. Although the sensor signals are individually read
out, the interacted crystals and respective energy depositions of the ICS events are not evident in the light-sharing detectors.

to estimate the depth-of-interactions within the crystals (Yamamoto and Ishibashi 1998, Ito etal 2011, 2013, Lee
etal2017,Schmidtetal 2018, Akamatsu et al 2019).

The positioning accuracy of PET, however, is degraded by the physical nature of photon interactions with
matter. A major degradation factor is inter-crystal scattering (ICS). ICS involves one or more Compton
scatterings of an incident photon in different crystals. In contrast to photoelectric (PE) absorption, where a
photon deposits its entire energy in a single interaction position, ICS results in the incorrect assignment of the
LOR because energy deposition occurs in more than one crystal (figure 1). Consequently, ICS worsens the spatial
resolution of PET. ICS accounts for a significant portion of the detection events in PET measurements, given
that for 511 keV photons, the cross-sections of Compton scattering in typical crystal materials are larger than
those of PE (Berger et al 2010). To overcome the PET performance degradation caused by ICS, several research
groups have studied the effects of ICS on PET performance (Miyaoka and Lewellen 2000, Ritzer eral 2017, Hsu
etal 2019, Teimoorisichani and Goertzen 2019, Zhang et al 2019, Lee et al 2020) and developed algorithms that
identify and recover ICS events using energy deposition and interaction position information (Comanor et al
1996, Shao et al 1996, Rafecas et al 2003, Pratx and Levin 2009, Gillam et al 2014, Lage et al 2015, Abbaszadeh et al
2018, Lee eral 2018, Surti and Karp 2018).

Identifying and recovering ICS events is more challenging in a light-sharing PET detector thanina 1:1
coupled detector. If each photosensor is coupled to only one crystal (i.e. 1:1 coupling), the energy deposited in
the individual crystals can be easily measured (figure 1). Moreover, ICS ina 1:1 coupling detector design can be
identified using electronic circuits based on individual (Ota et al 2016) or multiplexed (Park and Lee 2020) signal
readouts. However, the 1:1 coupling detector has limited design flexibility because the crystal and photosensor
pitches must be identical. To achieve a sub-millimeter spatial resolution with small crystals, a light-sharing
detector design must be designed, in which a photosensor is coupled with more than one crystal. Consequently,
the interacted crystals and their respective energy depositions are not evident under ICS in the light-sharing
detectors. A typical method for identifying the interacted crystals in light-sharing designs is to use a two-
dimensional (2D) floodmap, which is generated using multiplexing circuits or Anger logic (Duetal 2013, Ko
etal2013, Park etal 2017), as shown in figure 3. While PE events occurring in each crystal appear as peaks in the
floodmayp, ICS events are broadly distributed as superpositions of crystal positions weighted by signal
amplitudes.

To perform ICS recovery in light-sharing PET detectors, we propose convolutional neural network (CNN)
models that estimate event-by-event energy depositions or determine the first-interacted crystals. The CNNis a
well-established technique for recognizing patterns in images (Lecun et al 2015) as well as outperforming
traditional numerical and statistical methods in various medical image processing tasks (Hwang et al 2018, Park
etal2018, Hegazy etal 2019, Lee et al 2019, Gong et al 2020, Khouani et al 2020, Lee 2020). With regard to ICS
recovery, artificial neural networks are expected to have advantages in integrating Compton scattering
kinematics, Klein—Nishina probabilities, optical photon transport, and detector responses of ICS events, with an
additional benefit in the reduction of computational burden. Regarding the distribution of signal amplitudes
from the photosensor array as a 2D image, we applied a CNN rather than simple perceptron learning, to fully
utilize the 2D information to extract the features of energy depositions due to Compton scatterings. With the
rapid advancement of technology to handle numerous readout channels and enhance the detector performance,
the development of PET detectors based on individual signal readout, rather than multiplexed signal readout, is
increasing. Therefore, this study assumed that signals from the silicon photomultiplier array were individually
measured.
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Table 1. Geometries of the tested crystal arrays.

Crystal Crystal
Crystal array CSR pitch (mm) width (mm)
8 x 8 1:1 3.2 3.0
12 X 12 1.5:1 2.1 2.0
16 x 16 2:1 1.6 1.5
21 x 21 2.625:1 1.2 1.08

We conducted a proof-of-concept study to evaluate the feasibility of the proposed CNN-based ICS recovery
methods for various designs of PET detectors through Monte Carlo simulations. Then, we evaluated the
methods by studying their ability to identify the interacted crystals and energy depositions of the photon
interactions. The effects of the proposed methods on the spatial resolution of prototype PET rings were also
investigated.

2. Materials and methods

2.1. Detector designs

The tested LSO (Lu,SiOs, density = 7.4 gcm ™, refractive index = 1.82) crystal arrays had similar overall block
sizes, but with different crystal pitches or crystal-to-sensor ratios (CSRs), as shown in table 1. An 8 x 8 crystal
array was used for a 1:1 coupled detector with a crystal size suitable for whole-body imaging. Other detectors
featured light-sharing designs suitable for imaging smaller objects, such as human organs (2.1 and 1.6 mm
pitches) and small-animals (1.2 mm pitch). The crystal length was 20 mm in all cases. Each crystal array was
coupled with the same photosensor array. The 25.8 x 25.8 x 1.5 mm’ glass entrance window (density =
2.5gcm 7, refractive index = 1.5) of the photosensor array served as a light guide to distribute the optical
photons received from the crystals to photosensitive pixels. A photosensor with a total size of 25.6 x 25.6 mm®
was formed byan 8 x 8arrayof3 x 3 mm?photosensitive pixels in a 3.2 mm pitch as illustrated in figure 1.

2.2. Simulation setup

The entire dataset was acquired via a GATE v8.2 Monte Carlo simulation (Jan et al 2004) and an optical photon
simulation based on the UNIFIED model (Levin and Moisan 1996). The crystal surfaces were polished with the
sigma-alpha value set to 0.1°, where the sigma-alpha in the UNIFIED model is defined as the FWHM in the
angular distribution of the micro-facet surface relative to the macro-surface. The surfaces (except for the side
coupled to the photosensor) were wrapped with a diffusive reflector with 98% reflectivity. The photodetection
efficiency of the photosensitive area was 40%, whereas the light yield of the LSO crystal was 26 000 MeV ' with
9% intrinsic energy resolution at 511 keV. In this study, we did not model the lutetium background of the crystal
or the noise of the photosensors.

A25.8 x 25.8 mm®square-shaped uniform planar source was placed 10 cm above the top face of the crystal
array. The source emitted 511 keV photons perpendicular to the crystals. For every simulation setup throughout
this study, the number of source emissions was set to acquire approximately 20 000 first-interacted events per
crystal. An energy threshold of 400 keV was applied to the total energy deposited on the crystal array. For each
event, we recorded the signal amplitudes of the sensors, energy depositions in the crystals, and sequence of
interactions. To neglect intra-crystal scatterings, which accompany one or more Compton scatterings within a
single crystal, we summed the energy depositions within each crystal.

Prior to CNN implementations, we evaluated the occurrence rates of each event type by classifying the events
according to the number of interacted crystals for 511 keV photons. The events with only one crystal interaction
were regarded as PE, and those with more than one crystal interaction were regarded as ICS.

2.2.1. Effect of optical parameters
We investigated the individual effects of three different optical properties on the performances of the networks.
A single optical simulation parameter was varied, while other parameters were fixed:

(1) Light yield (26 000 MeV-1): 25%, 50%, 100%, and 200%.

(2) Intrinsic energy resolution (9% at 511 keV): 50%, 100%, 150%, and 200%.

(3) Reflectivity (98%): 25%, 50%, 75%, and 100%.

3
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Figure 2. Structures of ICS-eNet and ICS-cNet. C; and C, denote the numbers of channels in the respective convolution layers to be
optimized.

The light yield and intrinsic energy resolution were modified for the LSO material properties, while the
reflectivity was modified for the surface settings of the crystal elements. A 12 x 12 array was evaluated as the
representative design. Other details of the simulation setup and the training procedures were identical to those
reported in sections 2.2 and 2.3.

2.3. CNN structures
We modeled two different networks, namely ICS-eNet and ICS-cNet, that usean 8 x 8 distribution of the
sensor signals as a 2D input (figure 2). ICS-eNet was designed to identify event types and estimate energy
depositions in individual crystals. The application of ICS-eNet is not a complete recovery process; however, its
output can be used to apply existing ICS recovery algorithms mentioned in section 1. ICS-cNet directly selects
the crystal where the photon first undergoes Compton scattering. Both CNNs consisted of two convolution
layers with one 2 x 2 max-pooling layer between them. The sizes of the filter and stride in the convolution layers
were3 x 3and2 X 2,respectively. Each convolution layer was followed by batch normalization and a
rectifying linear unit layer. In ICS-eNet, a dropout layer with a 50% dropout probability and a fully connected
layer were added to estimate the N x N distribution of the energy deposition in each crystal as an output layer
(where N denotes the number of crystals). ICS-eNet was trained using the Adam optimizer and root-mean-
square error (RMSE) loss. Because ICS-cNet is a classification process, a fully connected layer and a softmax layer
were incorporated to determine the index of the first-interacted crystal. ICS-cNet was trained using the Adam
optimizer and cross-entropy loss.

The dataset was divided into training and validation sets (85% and 15%, respectively). The number of
channels in each layer (C; and C, in figure 2) was optimized for each detector design. We used MATLAB Deep
Learning Toolbox R2020b for the entire learning procedure.

2.4.Evaluation

2.4.1. ICS-eNet

As apreprocessing step in the recovery process, the events were first classified as PE or ICS using an algorithm
together with the output of ICS-eNet. For each event, we sorted the N x N output of the estimated energy
depositions and then selected the crystals with the largest (E,) and second largest (E,) energies. If E, /E, was
greater than a certain threshold, the event was classified as PE and the crystal with E; was selected as the
interacted crystal because the number of interacted crystals is expected to be 1 in PE events. Otherwise, the event
was classified as ICS, and crystals with E; and E, were selected as the interacted crystals. The threshold was set
where the E; /E, histogram of PE and ICS was divided with minimal error. We defined the event classification
accuracy as follows:

#(PE classified as PE) + #(ICS classified as ICS)
#(Total events)

x 100%.

After classification using the E; /E, algorithm, we measured the crystal selection accuracies for PE and ICS
individually as follows:
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Figure 3. Illustrations of the process applying practical floodmap-based crystal assignment without any ICS recovery. (a) Floodmaps
of 8 x 8,12 x 12,16 x 16,and 21 x 21 arrays generated by weighting the sensor positions with respective signal amplitudes. (b) To
emulate a configuration without ICS recovery, a Voronoi diagram based on the peaks on the floodmap was drawn (blue solid line),
and the segmented areas were indexed in order (numbers on the map). For each acquired event, the index of the segment to which a
weighted position belonged was assigned as the interacted crystal.

#(Crystal with E; = Interacted crystal)

PE: X 100%
#(Total PE events)
s #(Crystals with E; and E, = Interacted crystals) « 100%
: b.
#(Total ICS events)

After applying ICS-eNet to the test dataset, we investigated the linearity between the true and estimated E;
and E, values of the ICS events. For each linear fitting, R value was measured to evaluate the energy estimation
accuracy.

2.4.1.1. Comparison with the convex optimization method

The ICS identification performance of ICS-eNet was compared with that of an existing convex (CVX)
constrained optimization method (Lee et al 2018). In the CVX method, the relationship between the energy
deposition ratios in N” crystals (x) and M* photosensor responses () is assumed to be linear based on a pre-
calculated N* x M? matrix (A) of the characteristic photosensor response for PE event on each crystal as
follows:

y=Ax, > x=1

The CVX method finds a positive N* x 1 solution x by minimizing ||y — Ax |},, which corresponds to the

N X Noutput of ICS-eNet. The CVX method was applied to the same dataset using Matlab-based CVX
program (Grant and Boyd 2013) for each detector design. After applying the same E, /E, algorithm to vector x,
the event classification accuracy, crystal selection accuracy, and energy linearity were evaluated as described in
section 2.4.1.

2.4.2. ICS-cNet

The performance of ICS-cNet was evaluated according to the crystal selection accuracy, RMSE distance, and
relative RMSE distance reduction. The crystal selection accuracy of ICS-cNet was defined as the percentage of
events in which ICS-cNet accurately selected the first-interacted crystal. As a metric representing the point
spread, we measured the RMSE of the 2D distance between the centers of the predicted and true first-interacted
crystals. Additionally, the relative RMSE distance reduction was used as a metric to indirectly evaluate the effect
of the ICS recovery on the spatial resolution relative to the crystal pitch as follows:

RMSE distanceny recovery[mm] — RMSE distancecs— oner [mm]

Crystal pitch [mm]

Here, the term No recovery corresponds to the configuration emulated by conducting a typically used
floodmap-based crystal assignment to evaluate the impact of ICS-cNet on the performance compared to the case
without the ICS recovery. From the simulation data, the floodmap was generated by weighting the sensor
positions with respective signal amplitudes, which was analogous to Anger logic (figure 3). Because the peaks
represent the photon interactions in the individual crystals, the floodmap was partitioned by drawing a Voronoi
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Figure 4. Histograms of E, /E, estimated by ICS-eNet for PEand ICS eventsin (a) 8 x 8,(b) 12 x 12,(c) 16 x 16,and(d)21 x 21
arrays. The red vertical lines indicate the threshold set to classify the event as PE or ICS.

Table 2. Occurrence rates of PE and ICS events among all events [%].

8 x 8 12 x 12 16 x 16 21 x 21
PE (#Crystal = 1) 66.3 60.8 58.1 56.5
ICS #Crystal = 2 28.6 31.8 33.0 33.5
#Crystal = 3 4.7 6.6 7.9 8.5
#Crystal > 3 0.4 0.8 1.2 1.4

diagram of the peak positions. The interacted crystal of each event was assigned as the index corresponding to
the partition to which the event point on the floodmap belonged.

2.5. Spatial resolution

To measure the spatial resolution, we simulated a point source in PET rings comprising the detector blocks
described in section 2.1. The ring consisted of 18 transaxial and 1 axial detector blocks with an inner diameter of
170 mm. To combine the effects of acolinearity and positron range, we used a spherical source with a radius of
0.25 mm, which was placed at the center of a 10 mm plastic cube, emitting positrons with an energy distribution
identical to '®F. The source was placed at the center of the field-of-view and 4 cm off-center in the radial
direction.

We applied three different methods to the acquired coincidence datasets: ICS-eNet with proportional
scheme, ICS-cNet, and floodmap-based crystal assignment. The proportional scheme weighted the recorded
ICS events proportionally to the number of recorded PE events after the events were classified as PE or ICS by
ICS-eNet. The details of applying this scheme for ICS were described in a previous work (Lee et al 2020).
Assuming that one photon underwent PE in crystal P, of detector A and another photon underwent ICS in
crystals Sp; and Sg; of detector B, the numbers of LORs for P»Sg; and P»Sg, were given as follows:

PEp,s,,

LORpsn, = PEpisn, + PEps, + PEPASBZICSPASBISBZ forue 2}

where the subscripts denote the interacted crystals in PE or ICS events.
Similarly, in the case where both annihilation photons underwent ICS (one in the crystals Sy ; and Sa,, and
another in Sg; and Sg;), the numbers of LORs were given as follows:

PE
LORSAuSBv = PESAuSBv + S

ICSs, 5.5, s.foru € {1, 2}
PEs, s, + PEs,ss, + PEs,ss, + PEs,s, 154255182

andv € {1, 2}.

For each configuration, the image of the point source was reconstructed using 3D ordered-subset
expectation maximization with 18 subsets and 1 iteration in common. The length of the cubic image voxel was
identical to half of the crystal pitch. We measured full width at half maximum (FWHM) resolutions based on the
line profiles along radial, tangential, and axial directions. We also reported the improvements of the FWHM
resolutions achieved by applying ICS-eNet or ICS-cNet compared with the case of no recovery:

FWHMND recovery FWHN[ICS — Net
FWHMNG recovery

Improvement [%] =
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Figure 5. 2D histograms of true versus estimated energies for ICS-eNet and the linear fittings of (a) 8 x 8,(b) 12 x 12,(c) 16 X 16,
and (d)21 x 21arrays.

Table 3. Event classification and crystal selection accuracy of ICS-eNet.

8 x 8 12 x 12 16 x 16 21 x 21

ICS-eNet CVX ICS-eNet CVX ICS-eNet CVX ICS-eNet CVX

Event classification accuracy [%] 97 97 92 93 90 80 77 65
Crystal selection accuracy [%] PE 99 100 98 100 95 89 75 67

1CS 91 96 78 85 62 57 35 25
3. Results

3.1. Occurrence rates

The occurrence of ICS was more significant in higher-CSR detectors (table 2). In low-CSR detectors with a large
crystal pitch, the remaining energy was deposited before the scattered annihilation photons exited the first
crystal to the adjacent crystals. Because the proportions of the events in which three or more crystals interacted
were <10% for all the detectors, we could justify the selection of only two crystals of ICS events to simplify the
recovery with ICS-eNet, neglecting further scatterings.

3.2.ICS-eNet

3.2.1. Event classification accuracy and crystal selection accuracy

As shown in figure 4, the E; /E, distributions of the PE and ICS events were clearly separated in the low-CSR
detectors. This indicates that the threshold can be easily determined at the local minima of the mixed histogram
in reality. As the CSR increased, the E; / E, values of PE decreased and the area of overlap between the PE and ICS
increased. The event classification accuracy remained at 90% up to the 16 x 16 array. However, performance
degradation was observed for the 21 x 21 array (table 3). Selecting one interacted crystal of the PE events was
highly accurate forthe 8 x 8,12 x 12,and 16 x 16arrays. However, for the ICS events, the crystal selection
accuracy decreased significantly as the CSR increased. Note that the crystal selection for the ICS events was
considered correct when both interacted crystals were accurately determined.

As indicated by the floodmaps in figure 3, the limitation of ICS-eNet in the high CSR detectors resulted from
the highly superposed ICS energy information from the crystals to the signal distributions. Because each sensor
covered numerous crystals, the response of the signal distribution was insensitive to different amounts of energy
deposition. Therefore, the network was not trained to fully identify the differences in the signal distributions that
were input to the network.

Compared with ICS-eNet, the CVX method exhibited higher crystal selection accuracies of ICS events for
the8 x 8and 12 x 12 detectors, butlower accuracies forthe 16 x 16and21 x 21 detectors (table 3). This
degradation in the overall performance due to an increase in the CSR was more significant for CVX than for ICS-
eNet. Applying CVX to alight-sharing detector is equivalent to solving an underdetermined system event-by-
event; as CSR increases, a large number of variables (x) are determined by a limited number of observations (y)
based on the characteristic matrix (A) generated by PE events, which yields noisy solutions. In contrast, ICS-
eNet yielded relatively small degradation under high CSR conditions, owing to sufficient hidden units trained
with abundant combinations of crystal interactions, indicating that ICS-eNet is more suitable than CVX for
high-resolution detectors.
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Table 4. Comparison of fitted lines and R* values between ICS-eNet and CVX for

estimating E; and E,.

Fitted line R?
ICS-eNet CVX ICS-eNet CVX
8 x 8 y = 1.09x — 47.31 y = 1.14x — 48.43 0.907 0.913
12 x 12 y = 1.09x — 62.09 y = 1.14x — 64.05 0.835 0.806
16 x 16 y = 1.07x — 74.05 y = 1.07x — 63.56 0.725 0.662
21 x 21 y = 0.78x — 35.23 y=0.79% — 17.94 0.524 0.390

3.2.2. Energy linearity

The relationships between the true and estimated energies of the ICS events are demonstrated in figure 5. For
low-CSR detectors, ICS-eNet yielded strong correlations, with slope values approximately equal to 1. The
21 x 21 array exhibited poor energy linearity and a small slope value because the signal distributions could not
fully reflect the energy deposition pattern. Most events with Eggimatea < 50 keV were ICS events that were
misclassified into PE, implying that the event classification accuracy was affected by energy correlations.

Table 4 presents a comparison of the energy linearity performance between ICS-eNet and CVX. Again, ICS-
eNet outperformed CVX in the accuracy of estimating E; and E, particularly for high-CSR detectors. The slope
and bias values of the fitted lines for both methods were comparable.

3.3.ICS-cNet
3.3.1. Crystal selection accuracy

For all the detectors, the accuracy of ICS-cNet in selecting the first-interacted crystal of the ICS events was
approximately twice that for the method with no recovery (figure 6(a)). The accuracy of selecting the crystal of
the PE events was nearly 100% for all configurations (figure 6(b)). For the case of the 21 x 21 array with no
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Figure 8. Improvements in the radial (left), tangential (middle), and axial (right) FWHM resolutions of the PET prototype achieved by
applying ICS-cNet or ICS-eNet compared with the case without recovery. The radial offsets of the '*F point source were 0 cm (upper)
and 4 cm (lower).

Table 5. Relative RMSE distance reduction with
the application of ICS-cNet.

8 x 8 12 x 12 16 x 16 21 x 21

0.135 0.132 0.225 0.262

recovery, the accuracy was slightly reduced owing to ambiguous boundaries between the edge crystals, as shown
in figure 3(a). Combining the ICS and PE events, ICS-cNet achieved an accuracy improvement of >10% in
selecting the first-interacted crystal, owing to the considerable increase in the crystal selection accuracy of the
ICS events (figure 6(c)).

3.3.2. Error distance
In addition to its high accuracy, ICS-cNet reduced the RMSE distance compared with the case of no recovery for
all the detectors (figure 6(d)). The absolute reduction of the RMSE distance due to application of ICS-cNet was
more significant for the lower-CSR detectors, owing to the higher crystal selection accuracy and larger crystal
pitch, although the ICS occurrence was less frequent as reported in section 3.1.

However, as shown in table 5, the relative reduction in the RMSE distance was more significant for higher-
CSR detectors. This implies that, given the linear relationship between the spatial resolution and the crystal
pitch, the impact of ICS-cNet is more significant in PET systems that require a high spatial resolution.

3.4. Effects of optical properties

Figure 7 shows the effects of the light yield, intrinsic energy resolution, and crystal reflectivity on the
performance of the networks. To simplify the comparison of ICS-eNet, we reported the RMSE loss of estimating
the energy deposition of the individual crystal, which is directly linked to the metrics described in sections 2.4.1
and 3.2. For ICS-cNet, we reported the accuracy of selecting the first-interacted crystal for the overall events (i.e.
ICS + PE) as mentioned in sections 2.4.2 and 3.3.1.

The networks exhibited robust performance, varying within a few keV of the ICS-eNet RMSE and a few
percentage points of the ICS-cNet accuracy under our simulation conditions. Slight dependencies on the
scintillation yield and crystal surface reflectivity were observed. A high scintillation yield improved the statistical
signal-to-noise level of the photosensor readout. This indicates that a high photosensor gain and bright
scintillator are advantageous for applying the networks. The high reflectivity of the crystal elements efficiently
discriminated the signals from the individual crystal in ICS events by constricting the scintillation dispersions.
The effect of the intrinsic energy resolution was insignificant because the networks performed event-by-event
normalization of the signal amplitude arrays.

3.5. Spatial resolution
Both networks improved the spatial resolution of the PET prototype compared with the case of no recovery
(table 6 and figure 8). Applying ICS-eNet with the proportional scheme yielded a larger improvement than ICS-
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Table 6. Radial, tangential, and axial FWHM resolutions of the prototype PET ring composed of each detector design.
The radial offsets of the '*F point source were 0 and 4 cm.

8 x 8 12 x 12 16 x 16 21 x 21

Radial offset 0cm 4cm 0cm 4cm 0cm 4cm 0cm 4cm
Radial ICS-cNet 1.76 5.83 1.28 5.94 1.08 5.03 0.88 3.08
ICS-eNet 1.69 5.89 1.19 5.98 0.97 4.48 0.73 2.09

No recovery 1.88 5.96 1.40 591 1.19 4.90 0.94 3.05

Tangential ICS-cNet 1.76 2.30 1.28 2.13 1.08 1.49 0.88 1.19
ICS-eNet 1.68 2.36 1.19 2.22 0.97 1.46 0.73 1.14

No recovery 1.88 2.54 1.40 2.42 1.19 1.62 0.95 1.38

Axial ICS-cNet 1.66 1.66 1.15 1.13 0.94 0.92 0.76 0.76
ICS-eNet 1.62 1.64 1.09 1.11 0.87 0.86 0.67 0.65

No recovery 1.73 1.73 1.23 1.22 1.03 1.01 0.83 0.84

cNet in most cases. Although the results in section 3.2 indicated a low accuracy for hig- CSR detectors, ICS-
eNet alleviated the ICS blurring in the images. ICS-cNet exhibited a similar tendency of a larger improvement
for the high-CSR detector, as predicted from section 3.3.2. The impact of the networks was the smallest in the
radial direction ata 4 cm offset where the parallax error of depth-of-interaction was dominant compared with
the ICS blurring. However, ICS-eNet still achieved improvementsinthe 16 x 16and21 x 21 arrays.

4. Discussion

In this study, we designed and evaluated two different CNNs with different purposes. ICS-eNet was designed to
identify the photon interactions and serve as a preprocessor before the application of existing ICS recovery
algorithms. The first function of ICS-eNet is to classify each event as PE or ICS according to the ratio between the
largest and second-largest energy outputs. The results presented in section 3.1 imply that the recovery process
can be simplified without significantly affecting the accuracy by neglecting events with two or more Compton
scattering. The second function is to select the interacted crystals and estimate the respective energy depositions.
The slopes of the fitted lines in the distributions of true versus estimated energies were nearly 1 for the arrays up
to 16 x 16. This indicates that no additional energy calibration was required. Because the R* value is directly
linked to the uncertainty of the energy information, the use of ICS-eNet on the detectors up to the 16 x 16
arrays can increase the accuracy of the ICS recovery algorithms that employ the energy information. Although
significant biases were introduced in the linear fitting, they could be corrected because the total energy was
calibrated by the 511 keV peak from the detector block-level energy histogram.

Accurate information on the interaction positions and energies estimated by ICS-eNet can improve the
performance of the ICS recovery algorithms proposed in previous studies. The ICS recovery algorithms include
comparing the amount of energy (Comanor et al 1996, Shao et al 1996, Surti and Karp 2018), using Compton
kinematics or Klein—Nishina cross-sections (Rafecas et al 2003, Pratx and Levin 2009, Abbaszadeh et al 2018),
applying neural networks to LORs (Gillam et al 2014), and weighting the ICS events proportionally to the
number of PEs (Lage etal 2015, Lee et al 2020). Our previous studies focused on the proportional weighting
scheme because it significantly improved the image quality and had the advantage that selecting two interacted
crystals is enough to recover ICS, without the use of energy information (Lee eral 2018, 2020). The proportional
scheme consistently yielded good performance in combination with ICS-eNet in this study, improving spatial
resolution of the PET ring. Although ICS-eNet exhibited poor accuracy and energy linearity for high CSR, the
impact was minimized because the proportional scheme requires energy estimations only for classifying the
events, not for directly finding the first-interacted crystal.

ICS-cNet was proposed to simplify the recovery steps by directly selecting the first-interacted crystal.
Existing ICS recovery algorithms use explicit modeling of Compton scattering physics or maximum likelihood.
The most significant advantage of ICS-cNet is its simplicity when integrating the entire inference process based
solely on data measurements. As mentioned in section 3.3, ICS-cNet exhibited satisfactory performance
regardless of the CSR. The significant relative RMSE distance reduction in high-CSR detectors highlights the
importance of ICS-cNet application in high-resolution PET systems. Along with this result, ICS-cNet improved
the spatial resolution for high CSR detectors. Additionally, ICS-cNet alleviated the impact of ICS on the spatial
resolution of low CSR detectors owing to its high recovery accuracy and large crystal pitch.

For training ICS-cNet in reality, several possible methods can be used to accurately identify the first-
interacted crystals. For example, alead collimator with thin wells can be used to control the direction of
irradiation to each crystal. Mechanical collimators are widely employed for calibrating the interaction positions
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within detectors using monolithic crystals (Bruyndonckx et al 2006, Maas et al 2009, Marcinkowski et al 2016,
Peng et al 2019). Another option is electronic collimation by acquiring coincidence events between the test
detector and a small single reference detector. To irradiate every crystal with a narrow beam width, the point
source is placed directly in front of the top face of the target crystal while the reference detector is placed at a
distance from the crystal and aligned perpendicularly to the crystal. Strategies for accelerating the tasks will be
developed for practical applications at the system level.

Training ICS-eNet is challenging because the exact energy depositions are unknown. A possible approach is
to transfer the network trained by the Monte Carlo simulation to actual data. Additional data, such asa
floodmap, can be utilized as the network input to train the characteristics of the real detector response. One
paper proposed the implementation of a network ensemble which exhibits good performance in applying
networks trained by simulation-only data to real detectors (Iborra et al 2019). Methodologies for the efficient
training of ICS-eNet will be further developed.

Our proof-of-concept study demonstrates the potential of CNNs for ICS recovery in light-sharing PET
detectors. The simple CNN structures learned the patterns of the ICS events to estimate the energy depositions
and the first-interacted crystals, and achieved adequate performance for a wide range of CSRs. Metrics such as
crystal selection accuracy and energy linearity were used in this study to indirectly assess the impact of the
proposed method on the PET image quality. The enhanced spatial resolution with ICS recovery is expected to
improve the contrast and the lesion detectability of the reconstructed PET images.

The final goal of this study is to achieve high resolution in real PET imaging by alleviating the ICS effect on
blurring with the proposed methods. The methodology for experimental training of the networks will be first
established to be practically implementable in the scanner construction. Along with further improvement of the
network accuracy, various phantom imaging will be conducted with a PET ring constructed by the trained
detectors. ICS effect depends on the aspect ratio of the crystal elements and capability of measuring depth-of-
interaction because ICS effect is combined with other detector blurring factors such as parallax error and crystal
penetration (Rahmim et al 2013). In section 3.5, ICS recovery exhibited limited improvements in radial
resolution where parallax error is dominant. A systematic study will be designed to quantify the impact of each
blurring factor and to improve accuracy of point spread function modeling.

5. Conclusion

In this study, we assessed the feasibility and performance of CNN-based ICS recovery methods for PET detectors
with various light-sharing designs. The results indicate that ICS-eNet accurately identified ICS events and
estimated the energy depositions, while ICS-cNet achieved suitable accuracy in selecting the first-interacted
crystals and reduced the error distance for all the detectors. Both networks enhanced the spatial resolution of the
PET ring, particularly for highly pixelated arrays. The proposed CNN models are expected to recover ICS
effectively and improve the overall image quality of PET using light-sharing detector designs.
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