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Abstract: The lack of physically measured attenuation maps (µ-maps) for attenuation and scatter
correction is an important technical challenge in brain-dedicated stand-alone positron emission
tomography (PET) scanners. The accuracy of the calculated attenuation correction is limited by
the nonuniformity of tissue composition due to pathologic conditions and the complex structure of
facial bones. The aim of this study is to develop an accurate transmission-less attenuation correction
method for amyloid-β (Aβ) brain PET studies. We investigated the validity of a deep convolutional
neural network trained to produce a CT-derived µ-map (µ-CT) from simultaneously reconstructed
activity and attenuation maps using the MLAA (maximum likelihood reconstruction of activity and
attenuation) algorithm for Aβ brain PET. The performance of three different structures of U-net
models (2D, 2.5D, and 3D) were compared. The U-net models generated less noisy and more uniform
µ-maps than MLAA µ-maps. Among the three different U-net models, the patch-based 3D U-net
model reduced noise and cross-talk artifacts more effectively. The Dice similarity coefficients between
the µ-map generated using 3D U-net and µ-CT in bone and air segments were 0.83 and 0.67. All three
U-net models showed better voxel-wise correlation of the µ-maps compared to MLAA. The patch-
based 3D U-net model was the best. While the uptake value of MLAA yielded a high percentage
error of 20% or more, the uptake value of 3D U-nets yielded the lowest percentage error within
5%. The proposed deep learning approach that requires no transmission data, anatomic image, or
atlas/template for PET attenuation correction remarkably enhanced the quantitative accuracy of the
simultaneously estimated MLAA µ-maps from Aβ brain PET.

Keywords: attenuation correction; convolutional neural network; amyloid; positron emission tomog-
raphy; Alzheimer’s disease

1. Introduction

Among the many different physical and technical factors affecting the image quality
and quantitative accuracy of position emission tomography (PET) images, attenuation
of annihilation photon pairs due to photoelectric absorption and Compton scattering is
the single largest factor [1]. In old PET scanners without the combination with computed
tomography (CT) or magnetic resonance imaging (MRI), transmission sources with long-
lived radioisotopes, such as 68Ga/68Ge and 137Cs, were used to acquire the transmission
and blank scans needed for the attenuation correction (AC) in PET [2,3]. In PET/CT,
CT images are converted into the PET attenuation map (µ-map) using piecewise linear
relationship relationship between the CT Hounsfield Unit and linear attenuation coefficient
for 511 eV photons [4,5]. Although PET quantification errors due to artifacts in CT images
and spatiotemporal mismatch between CT and PET still exist [6–10], CT-based AC is
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regarded as a silver standard in PET AC. PET AC in PET/MRI remains an unsolved
technical issue because MR images do not provide direct information to measure high-
energy photon attenuation [11–14]. Therefore, several PET AC strategies that do not require
CT images have been proposed. Among them, UTE and ZTE MRI-based and atlas-based
methods are used for clinical brain PET/MRI studies [15–20]. PET AC in whole-body
PET/MRI studies relies mainly on Dixon MRI-based µ-maps with no bone segments,
leading to large errors in osseous regions [21–23]. Recently, various deep learning-based
approaches have been proposed to improve the MRI-based PET AC methods, with great
potential for replacing conventional approaches [24–28].

With the aging of the global population, neurodegenerative brain disorders such
as Alzheimer’s disease and Parkinson’s disease become more prevalent. Visualizing
specific biomarkers using PET scans is the most well-proven in vivo approach in major
neurodegenerative brain disorders. Therefore, brain-dedicated standalone PET scanners
that can provide more affordable solutions for early diagnosis of brain disorders than the
current whole-body PET/CT and PET/MRI scanners are actively developed, demanding
accurate transmission-less PET AC methods [29–32]. Although calculated-AC [33] and
atlas-based AC [34,35] can be applied to standalone brain PET scanners, the accuracy of
these approaches is limited in patients with large anatomical deviations from the normal
population [36,37]. Some deep learning-based transmission-less AC methods are showing
promise to overcome the limitations of conventional AC approaches for standalone brain
PET [24,38–44].

However, the previous PET AC studies usually focused on 18F-FDG PET scans. Only
few methods have been proposed and assessed for amyloid imaging. Dixon MR-based
AC caused biases compared to CT-based AC in quantitative analysis for 11C-Pittsburgh
compound B (11C-PiB) and 18F-Florbetapir studies [45]. Recently, a deep learning method
applied to the integrated UTE/multi-echo Dixon sequence have been proposed for 11C-PiB
and 18F-MK-6240 (tau PET imaging) PET/MRI studies [46]. To the best of our knowledge,
there is no PET AC study conducted for 18F-Florbetaben.

The aim of this study is to develop an accurate transmission-less attenuation correction
method for amyloid-β (Aβ) brain PET studies. Previously, we reported that deep neural
networks can improve simultaneous activity and attenuation reconstruction that does not
require any transmission data, such as CT [40,41]. However, this new method was validated
only for 18F-FP-CIT brain PET for dopamine transporter density assessment [41] and 18F-
FDG whole-body PET for glucose metabolism [40]. In this study, we further investigated the
validity of a deep neural network trained with simultaneously reconstructed activity and
attenuation maps and ground truth CT-based µ-maps for Aβ brain PET. To achieve better
quantitative accuracy of attenuation and activity maps, we compared the performance
of three different structures (2D, 2.5D, and 3D) of U-net [47] which had achieved good
performance in our previous work for improving the simultaneous activity/attenuation
reconstruction and many other works [40,41,48–55].

The following sections cover the method followed for collecting brain PET/CT data
of 18F-Florbetaben, an Aβ brain PET tracer used in our institution, and the method of
designing, training, and testing the networks. Then, the performance of the networks in
µ-map prediction and PET quantification is presented to address the question whether 3D
learning will lead to network performance improvement in this task.

2. Materials and Methods
2.1. Dataset

Brain 18F-Florbetaben PET/CT scan data of 100 subjects with suspected Alzheimer’s
disease (51 amyloid positive and 49 negative, 45 males and 55 females, age: 74.48 ± 7.14
years) were retrospectively analysed. The PET/CT data were acquired using a Siemens
Biograph mCT40 scanner (Siemens Healthcare, Knoxville, TN, USA) having a time res-
olution of 580 ps. The PET/CT imaging was performed for 10 min in a single PET bed
position, 90 min after administering an intravenous injection of 18F-Florbetaben (305.9 MBq
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on average). The head of each participant was positioned in a head holder attached to the
patient bed, and the PET/CT scan was conducted by following the routine clinical protocol
for brain studies (topogram, CT, and emission PET scans). All datasets were reconstructed
using ordered-subset expectation maximization (OSEM, 3 iterations, 21 subsets, 5 mm
Gaussian post-filter) with CT-derived attenuation map (µ-CT) and maximum likelihood
reconstruction of activity and attenuation (MLAA, 6 iterations, 21 subsets, 5 mm Gaus-
sian post-filter) with time-of-flight (TOF) information [56–59]. To mitigate the non-unique
global scaling problem in the MLAA, the boundary constraint was applied during the
attenuation image estimation in the MLAA. The initial µ-map estimate of the MLAA was
a uniform image filled with 1.0. Scatter sinogram was estimated from µ-CT using single
scatter simulation. The dimensions and voxel size of the reconstructed PET images were
200 × 200 × 109 and 2.04 mm × 2.04 mm × 2.03 mm, respectively. To obtain µ-CT, the CT
images that had the dimensions and voxel size of 512 × 512 × 149 and 0.59 mm × 0.59 mm
× 1.5 mm, respectively, were resampled to have the same dimensions and voxel size as the
PET images.

2.2. Network Architecture

As mentioned previously, three different U-net models (2D, 2.5D, and 3D) were
designed, trained, and tested. The U-net models were trained to produce µ-maps equivalent
to µ-CT once the activity and attenuation maps obtained from the MLAA (λ-MLAA and µ-
MLAA) are given to the U-net as input (Figure 1). All the input and output image sizes were
200 × 200 for the 2D U-net models (slice-to-slice translation), which is a straightforward
structure. For the 3D U-net models, input voxel patches with a size of 32 × 32 × 32 in
head pixels were extracted from λ-MLAA and µ-MLAA, with stride 4. Three-dimensional
(3D) U-net is expected to provide more accurate attenuation maps with reduced axial
discontinuities using extensive local information from 3D patches. The 2.5D U-net was
designed to produce a central slice once three neighboring slices with a size of 200 × 200
were provided to the network (slab-to-slice translation). The 2.5D U-net was a compromise
between 2D U-net and 3D U-net employing whole transaxial planes to reduce in-plane
discontinuities, as well as providing additional information from neighboring slices. The
input image intensity was normalized to a range of 0–1.
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Figure 1. U-net architectures used to learn µ-CT from λ-MLAA and µ-MLAA, which were con-
catenated and passed in two input channels. The first row in the right box shows the network
architecture. The dimensions of the input/output images and feature maps were different depending
on the dimension of the network models (2D, 2.5D, or 3D). The dimensions of the feature maps in
each layer are shown in the second row in the right box.

The U-net models consisted of convolution layers, rectified linear units (ReLU),
2 × 2 max pooling layers (2 × 2 × 2 in 3D networks), deconvolution layers, and a 1 × 1
(1 × 1 × 1 in 3D networks) convolution layer. In the contracting path, the 3 × 3 convolu-
tions (3 × 3 × 3 in 3D networks) and ReLU function were repeated twice for each layer;
further, the image dimension was reduced by half while the number of features was dou-
bled by applying 2 × 2 max pooling (2 × 2 × 2 in 3D networks) with a stride of 2. In
the expanding path, the image dimension was doubled, and the number of features was
reduced by half by applying 2 × 2 up-convolution (2 × 2 × 2 in 3D networks) that used
the nearest-neighbour interpolation. The concatenation operator was applied by the skip
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connections of the cropped feature map before max pooling in the contracting path to the
expanding path. We implemented the networks using the TensorFlow library.

2.3. Training and Validation

The cost function was the L1-norm between the U-net output (µ-CNN) and µ-CT.
The cost function was minimized using the adaptive moment estimation method (Adam
optimization). The network weights were initialized using the Xavier method, which
assigns random weights considering the number of inputs and outputs [60]. The batch size
was 30 in the 2D and 2.5D networks, and it was 100 in the 3D network. The number of
epochs was 50 in the 2D and 2.5D networks, it was and 20 in the 3D network. The learning
rate was initially 0.001 for all the networks, and it was reduced for each epoch by 0.5, 0.5,
and 0.8 times in the 2D, 2.5D, and 3D networks, respectively.

The training data were shuffled before each epoch to create randomization in the
batch training. While using the Ryzen 1700X CPU with a GTX 1080 GPU, each epoch took
approximately 12, 23, and 180 min for the 2D, 2.5D, and 3D networks, respectively.

We performed five-fold cross-validation to evaluate the performance of the networks.
Accordingly, the 100 datasets were divided into 5 groups of 20 datasets in random order
(20 in each group). In each cross-validation study, 3 groups (total: 60 datasets) were used
for training the networks, 1 group (20 datasets) was used for training validation, and the
remaining group (20 datasets) was used for evaluation. Supplementary Figure S1 shows the
validation error learning curve for 2D, 2.5D, and 3D networks along the training epochs.

2.4. Image Analysis

The maps µ-MLAA and µ-CNNs were compared with µ-CT, the ground truth. The
similarity of the µ-maps was evaluated using the Dice similarity coefficient, voxel-wise
correlation, normalized root mean square error (NRMSE), and peak signal-to-noise ratio
(PSNR) [41,52]. The Dice similarity coefficient was calculated for the air and bone segments.
The voxels with µ-values greater than 0.1134 (=300 Hounsfield units) were regarded
as bone segment; those with µ-values less than 0.0475 (=−500 Hounsfield units) were
regarded as air segment [41]. In addition, the voxels with µ-values between the above
limits were regarded as soft tissue. The Dice similarity coefficient was calculated using the
following equation

D =
2× N(µ−CT ∩ µ−PET)

Nµ−CT + Nµ−PET
(1)

where Nµ-CT and Nµ-PET are the number of bone (or air) voxels in the µ-maps derived from
CT (µ-CT) and PET (µ-MLAA or µ-CNNs) data, respectively. N(µ-CT ∩ µ-PET) indicates the
number of overlapped voxels between the µ-maps from CT and PET.

The NRMSE enables comparison between the datasets of models with different scales,
and the PSNR is a quantitative measure of the differences between two images.

PSNR = 10× log10

(
Max2

µ−CT

MSE

)
(2)

NRMSE =

√
MSE

(Max)µ−CT − (Min)µ−CT
(3)

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j) − K(i, j)]2 (4)

where Max and Min are the maximum and minimum intensities, respectively, of the
reference image, µ-CT. MSE is the average value of the squared error between µ-CT and
µ-CNN or µ-CNNs, and m and n are the width and height in pixels, respectively, of
the image.
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The PSNR measurement was also performed on the activity images reconstructed
using the different µ-maps and the OSEM algorithm. Regional analysis was also performed
in the same manner as in our previous study with 18F-FP-CIT brain PET [41]. The ground-
truth PET activity images, corrected for attenuation using µ-CT, were spatially normalized
using statistical parametric mapping software (http://www.fil.ion.ucl.ac.uk/spm, accessed
on: 1 August 2019), and the same transformation parameters were applied to the images
corrected using µ-MLAA and µ-CNNs. The standard uptake value (SUV) and SUV ratio
relative to the reference region (SUVr) were measured using the automatic regions of
interest (ROIs) predefined by the statistical probabilistic anatomic maps [61,62].

2.5. Comparison between 2D, 2.5D, and 3D U-Net

Training the 2D network is fast and requires less memory compared to training the 3D
network. However, stacking 2D network outputs to generate 3D attenuation maps leads
to discontinuities in the axial dimension. On the other hand, training the 3D network is
computationally expensive and requires much more memory. As training a 3D network
using whole PET images is generally difficult, training with 3D patches extracted from
whole PET images is usually employed. However, 3D patch-based inference would also
lead to discontinuities at the borders of patches. The 2.5D networks have been proposed as
a compromise between 2D and 3D, using multi-slice inputs. The 2D and 3D networks are
evaluated in the previous studies using different tracers using 18F-FP-CIT and 18F-FDG,
respectively [40,41], but there are no direct comparison using a same tracer among 2D,
2.5D, and 3D networks. In this study, we compared these architectures with evaluation
measures stated above.

2.6. Comparison between Single-Image Input and Multi-Input

As noise patterns and cross-talk artifacts in λ-MLAA and µ-MLAA are highly corre-
lated, our networks were designed to exploit some useful features from combination of
λ-MLAA and µ-MLAA to solve the problems when generating attenuation maps. By doing
so, we expect that better performance could be achieved compared to when employing
only λ-MLAA or µ-MLAA as an input. To explore the relative importance of λ-MLAA
and µ-MLAA input, a 3D network was additionally trained with each of two separately
and tested.

3. Results

The µ-MLAA appeared very different from µ-CT, mainly owing to severe cross-talk
artefacts between the activity and attenuation maps generated by MLAA. On the other
hand, the U-net models generated less noisy and more uniform µ-maps (Figure 2). The
µ-maps estimated using the original MLAA were considerably underestimated, which
was mitigated by applying the deep neural networks. The performance of patch-based
3D learning was superior to those of 2D slice-to-slice and 2.5D slab-to-slice translations
(Figures 2–4, and Table 1). The 2.5D U-net models did not yield performance improvement
in comparison with 2D.

Figure 4 shows the plots of the NRMSE between µ-maps along the axial slice location
in a representative patient, as shown in Figures 2 and 3. As shown in this figure, the error
relative to µ-CT (ground truth µ-map) was dramatically reduced by applying the deep
neural networks to the MLAA output images. In this case, the NRMSE decreased as the
dimensions of the model increased from 2D to 3D. However, the incremental gain from
2D to 2.5D was not as high as that from 2.5D to 3D. The 3D patch-based learning was also
useful in eliminating the discontinuity of pixel values in the axial direction, as shown in the
output of 2D networks (Figure 2). Figure 4 also shows that the NRMSE between µ-CNNs
and µ-CT is larger in the facial bone areas (smaller-numbered slices in Figure 4) such as the
nasal cavity than in the cranial regions.

http://www.fil.ion.ucl.ac.uk/spm
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NRMSE between the U-net outputs (µ-CNNs) and µ-CT is larger in the facial bone areas (smaller-
numbered slices) such as the nasal cavity than in the cranial regions (larger-numbered slices).
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Table 1. Dice similarity coefficients with the CT-derived µ-map (µ-CT).

Method Bone Air

MLAA 0.073 ± 0.081 0.055 ± 0.015

2D U-net 0.718 ± 0.048 0.400 ± 0.074

2.5D U-net 0.702 ± 0.047 0.424 ± 0.062

3D U-net 0.826 ± 0.032 0.674 ± 0.057

The deep neural networks resulted in a significant improvement from µ-MLAA to
µ-CNNs in the measurement of Dice similarity coefficients relative to µ-CNN (Table 1).
The inaccuracy of µ-MLAA disabled proper segmentation of bone and air regions based on
the µ-values. The Dice similarity coefficients between µ-MLAA and µ-CT in bone and air
segments obtained here with 18F-Florbetaben PET data (0.073 and 0.055) were smaller than
those obtained in our previous study conducted with 18F-FP-CIT PET (0.374 and 0.317) [41].
In both the bone and air segments, the mean Dice similarity coefficients increased, and their
standard deviations decreased by applying the deep neural networks. The 3D patch-based
learning yielded higher similarity in the bone and air segmentation to the ground truth
than 2D or 2.5 learnings. Although the 2D U-net yielded a lower Dice similarity coefficient
(0.718 and 0.400 in bone and air, respectively) than the previous study 18F-FP-CIT PET, in
which the 2D U-net was also applied (0.787 and 0.575), the 3D U-net achieved better results
(0.826 and 0.674).

The voxel-wise correlation of µ-maps are summarized in Table 2, showing the im-
proved accuracy of the µ-map by CNN. All three U-net models showed better voxel-wise
correlation of the µ-maps compared to MLAA. The patch-based 3D U-net model was
the best.

Table 2. Voxel-wise correlation coefficients with the CT-derived µ-map (µ-CT).

Method Regression Line R2

MLAA y = 0.30x + 0.035 0.05

2D U-net y = 0.71x + 0.029 0.68

2.5D U-net y = 0.69x + 0.030 0.67

3D U-net y = 0.83x + 0.017 0.80

The PSNR evaluation summarized in Table 3 also shows improved µ-map generation
and PET quantification achieved by applying the 3D patch-based learning. There were
at least 18 dB PSNR improvements in the µ-map and PET activity data, respectively, by
applying DL to the MLAA outputs, and the improvement was the largest with 3D U-nets.
Figure 5 shows the activity images corrected for attenuation using different µ-maps and
reconstructed using the OSEM algorithm, and the SUV error map was relative to the
ground truth (corrected image using µ-CT).

Table 3. Peak signal-to-noise ratio (PSNR) and normalized root mean square error (NRMSE) relative
to the ground truth (µ-CT and λ-CT).

Method
Attenuation Map Activity Map

NRMSE PSNR (dB) NRMSE PSNR (dB)

MLAA 0.197 8.06 0.132 17.78

2D U-net 0.049 26.21 0.017 35.73

2.5D U-net 0.053 25.95 0.017 35.44

3D U-net 0.039 28.31 0.011 38.77
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Figure 5. Activity images in standard uptake value (SUV) corrected for attenuation using different µ-maps and SUV error
maps relative to the ground truth (image corrected using µ-CT). The smallest SUV error was obtained using µ-3D.

ROI analysis was conducted in four regions (putamen, caudate head, cerebellum, and
occipital cortex) using activity maps that were attenuation-corrected using the proposed
µ-maps. In addition, percentage errors of SUV and SUVr were calculated (Figure 6). While
the uptake value of MLAA yielded a high percentage error of 20% or more, the uptake
value of 3D U-nets yielded the lowest percentage error within 5%. Furthermore, the
standard deviation of MLAA was larger than that of the CNN outcomes. In both SUV and
SUVr quantification, the 3D U-nets showed a smaller bias and dispersion than the 2D or
2.5D U-nets.
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The results of network training using only λ-MLAA or µ-MLAA are shown in Figure
7. The errors in attenuation map generation were much smaller than original MLAA.
However, the combined input (λ-MLAA and µ-MLAA) yielded the smallest error, as
shown Figure 7. The amount of error in the networks trained using only λ-MLAA and
µ-MLAA was almost identical.
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4. Discussion

In this study, we compared the performance of three different CNN schemes based
on the U-net structure to predict µ-CT from the outcomes of MLAA simultaneous activity
and attenuation reconstruction for 18F-Florbetaben Aβ PET. As shown in the results, the
3D patch-based learning used in our previous work for whole-body 18F-FDG PET [40]
outperformed the 2D slice-to-slice translation strategy that was used in the 18F-FP-CIT
brain PET study [23]. Although the addition of neighboring slices in the input (2.5D slab-to-
slice translation) improved the µ-map prediction performance, the improvement was not
remarkably high. The general performance of the original MLAA in the prediction of µ-map
for 18F-Florbetaben was inferior to that of 18F-FP-CIT [41]. However, the 3D patch-based
learning could overcome this limitation of MLAA and enabled accurate PET quantification.
The improved performance using 3D patch-based learning compared to using 2.5D slab-
to-slice translation is much higher than between 2.5D slab-to-slice translation and 2D
slice-to-slice translation (Figure 4 and Tables 1–3). Extensive local information from 3D
patch would allow CNN to better extract the features of the attenuation map, whereas only
three slices from the 2.5D slab would not be enough to make significant improvement in
the CNN performance.

As shown in Figure 4, the error in predicting µ-CT was higher in the facial bone regions
than in the cranial bone regions. This implies that the deep learning-based approach used
in this study was not sufficiently good for reconstructing the fine anatomical details in
the facial bone regions. However, this inferior result mainly appears to originate from the
poor anatomical information provided by the MLAA reconstruction. Improved MLAA
performance in more advanced PET systems with better timing resolution will be useful
in overcoming the limitations of the proposed method [63–65]. Another useful approach
that we should try in future studies is the modification of the loss function to obtain better-
trained networks. Recently, Shi et al. showed improvement in the present method for
whole-body 18F-FDG PET studies by adding an additional loss function in the projection
space (integration of attenuation coefficient along the line of response) to the image fidelity
loss [43]. This modification would be highly relevant, because the PET AC is performed in
the projection space and not in the reconstructed image space. Further investigations are
required on the advanced loss functions for the Aβ brain PET data.

As shown in Figure 7, training with combined input (λ-MLAA and µ-MLAA) achieved
better convergence and yielded the smaller errors compared to training with only λ-MLAA
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or µ-MLAA. This implies that both λ-MLAA and µ-MLAA are advantageous for network
to suppress noise levels and reduce cross-talk artifacts in attenuation map generation. In
addition, the accuracy of training using only λ-MLAA and µ-MLAA was almost identical.
This indicates that the importance of λ-MLAA and µ-MLAA to the networks is almost
identical. Perhaps, the superior performance of the proposed method would be mainly
attributed to the utilization of combined inputs for generating enhanced attenuation maps,
while conventional approaches focused on only manipulating µ-MLAA by applying a
background prior and using constrained Gaussian mixture models [58,66].

There are a growing number of PET AC studies that have reported AC performance
improvement by introducing generative adversarial networks (GAN) [38,39,67]. We have
also attempted to apply a conditional GAN method that was effective in our previous
studies on PET to MRI transformation and Aβ PET template generation [68,69] to the
present task. However, we could not achieve significant performance improvement in the
µ-map prediction.

Another active transmission-less approach for PET AC is the deep learning-based
conversion of non-attenuation-corrected PET images to the µ-map or attenuation-corrected
PET image [19]. Initial studies on this approach have also shown promising results in 18F-
FDG brain and whole-body PET studies. However, studies on tracers other than 18F-FDG
have rarely been conducted.

When compared to the MRI-based AC methods applied to the amyloid and tau PET
dataset [47], our 3D patch-based learning with no MRI input shows comparable results
with CNN employing Dixon sequence and is slightly inferior to CNN employing integrated
UTE/multi-echo Dixon sequence (Dice coefficient: ours = 0.83, CNN-Dixon = 0.84, CNN-
integrated UTE/multi-echo Dixon = 0.87). However, this comparison only serves as a
reference because the radiotracer and enrolled patients are different.

Our method has been validated using various tracers including 18F-FP-CIT, 18F-FDG,
68Ga-DOTATOC [40,41,70], and 18F-Florbetaben (this study). A limitation of this study is
that we currently need to re-train the network from the scratch for applying this method to
new radiopharmaceutical. Thus, a large number of scans is required for each radiopharma-
ceutical. To overcome this limitation, transfer learning that reuses a model developed for
“old” tracers as the starting point for a model on “new” tracers should be considered as
future works.

In addition, this attenuation map generation might be useful for other diagnosis
supporting tasks including classification, segmentation, prediction, and detection [71–74].

5. Conclusions

We have proposed an attenuation correction method using MLAA with deep learning.
The proposed deep learning approach that requires no transmission data, anatomic image,
or atlas/template for PET attenuation correction remarkably enhanced the quantitative
accuracy of the simultaneously estimated MLAA µ-maps from Aβ brain PET. The benefit of
using 2.5D slab-to-slice translation was not significant compared to using 2D slice-to-slice
translation. The approach using 3D patch outperformed the others. The combined input of
λ-MLAA and µ-MLAA could reduce the error of generated attenuation maps compared
to single input of λ-MLAA or µ-MLAA. Both λ-MLAA and µ-MLAA have almost equal
contributions for accuracy of the proposed method. Further study might be needed to
apply the proposed method on “new” tracers, utilizing previous trained networks. This
attenuation map generation would be applied to other diagnosis supporting tasks as well
as the attenuation correction task.
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Abbreviations

PET Positron emission tomography
CT Computed tomography
MRI Magnetic resonance imaging
AC Attenuation correction
µ-map Attenuation map
Aβ Amyloid-β
OSEM Ordered-subset expectation maximisation
µ-CT CT-derived attenuation map
MLAA Maximum likelihood reconstruction of activity and attenuation
λ-MLAA Activity maps obtained from the MLAA
µ-MLAA Attenuation maps obtained from the MLAA
ReLU Rectified linear units
µ-CNN U-net output
NRMSE Normalized root mean square error
PSNR Peak signal-to-noise ratio
SUV Standard uptake value
SUVr SUV ratio relative to the reference region
ROI Region of interest
GAN Generative adversarial network
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