
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00259-021-05637-0

ORIGINAL ARTICLE

Comparison of deep learning‑based emission‑only attenuation 
correction methods for positron emission tomography

Donghwi Hwang1,2,3 · Seung Kwan Kang1,2,3,4 · Kyeong Yun Kim1,2,4 · Hongyoon Choi2 · Jae Sung Lee1,2,3,4,5 

Received: 12 July 2021 / Accepted: 24 November 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Purpose  This study aims to compare two approaches using only emission PET data and a convolution neural network (CNN) 
to correct the attenuation (μ) of the annihilation photons in PET.
Methods  One of the approaches uses a CNN to generate μ-maps from the non-attenuation-corrected (NAC) PET images 
(μ-CNNNAC). In the other method, CNN is used to improve the accuracy of μ-maps generated using maximum likelihood 
estimation of activity and attenuation (MLAA) reconstruction (μ-CNNMLAA). We investigated the improvement in the CNN 
performance by combining the two methods (μ-CNNMLAA+NAC) and the suitability of μ-CNNNAC for providing the scatter 
distribution required for MLAA reconstruction. Image data from 18F-FDG (n = 100) or 68 Ga-DOTATOC (n = 50) PET/CT 
scans were used for neural network training and testing.
Results  The error of the attenuation correction factors estimated using μ-CT and μ-CNNNAC was over 7%, but that of 
scatter estimates was only 2.5%, indicating the validity of the scatter estimation from μ-CNNNAC. However, CNNNAC 
provided less accurate bone structures in the μ-maps, while the best results in recovering the fine bone structures were 
obtained by applying CNNMLAA+NAC. Additionally, the μ-values in the lungs were overestimated by CNNNAC. Activ-
ity images (λ) corrected for attenuation using μ-CNNMLAA and μ-CNNMLAA+NAC were superior to those corrected using 
μ-CNNNAC, in terms of their similarity to λ-CT. However, the improvement in the similarity with λ-CT by combining the 
CNNNAC and CNNMLAA approaches was insignificant (percent error for lung cancer lesions, λ-CNNNAC = 5.45% ± 7.88%; 
λ-CNNMLAA = 1.21% ± 5.74%; λ-CNNMLAA+NAC = 1.91% ± 4.78%; percent error for bone cancer lesions, 
λ-CNNNAC = 1.37% ± 5.16%; λ-CNNMLAA = 0.23% ± 3.81%; λ-CNNMLAA+NAC = 0.05% ± 3.49%).
Conclusion  The use of CNNNAC was feasible for scatter estimation to address the chicken-egg dilemma in MLAA recon-
struction, but CNNMLAA outperformed CNNNAC.

Keywords  Deep learning · Simultaneous reconstruction · Scatter correction · Attenuation correction

Introduction

Various physical and patient factors such as attenuation, 
scattering, and motion need to be corrected to accurately 
estimate the distribution of radioactive tracers in positron 
emission tomography (PET). As the scattered line-of-
response (LOR) distribution is usually estimated based 
on the linear attenuation coefficient map (attenuation 
map: μ-map) for 511-keV annihilation photons [1–3], 
accurate μ-map generation is important for both attenua-
tion correction (AC) and scatter correction (SC). In dual-
modality hybrid PET systems, computed tomography (CT) 
or magnetic resonance (MR) images are converted into 
μ-maps with nearly no statistical noise [4–9]. However, 
CT artifacts often cause errors in attenuation-corrected 
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PET images [10–12]. Additionally, the accuracy of MR-
based PET AC has been proven only in adult brain PET 
images with normal anatomy [13, 14]. However, this has 
not yielded satisfactory results in whole-body scans [15, 
16]. The spatial mismatch between the emission PET and 
μ-maps derived from CT or MR images is another source 
of error in anatomical image-based PET AC [17–19].

Deep learning (DL)-based PET AC methods using only 
PET emission data have several advantages over anatomi-
cal image-based AC methods [14]. DL-based emission-only 
approaches are free of errors due to the spatial mismatch 
between the emission and transmission data [14, 20, 21]. 
They can also be applied to standalone PET systems (e.g., 
brain-dedicated PET) without CT or MR images [22, 23]. 
One of the emission-only approaches is to use the deep 
neural network(s) to generate pseudo-CT or μ-maps from 
non-attenuation-corrected (NAC) PET images [20, 24, 25]. 
Although NAC PET images do not contain explicit informa-
tion about photon attenuation, deep neural networks could 
predict μ-maps, including bone structures. However, the 
NAC PET-based method has shown relatively high error in 
the lungs, which generally has large inter-individual variabil-
ity in μ-values [25]. Similarly, a method directly generating 
CT-based AC PET images from NAC PET without attenu-
ation map generation has been proposed [26–29]. However, 
this approach is vulnerable to outliers and fails to recover 
quantitative accurate activity around the center of the head 
with complex anatomical structures [26]. There is an alter-
native approach to obtaining both AC PET and attenuation 
map from NAC PET [30]. However, this study was limited 
to 2D-based learning, which suffers from the problem of 
discontinuity across the slices [30].

Another DL-based emission-only approach is to improve 
the accuracy of μ-maps generated by simultaneous recon-
struction of activity and attenuation only from emission 
PET data [21, 31–34]. Simultaneous activity and attenuation 
reconstruction has evolved by incorporating time-of-flight 
information into the sub-iterations estimating the activity 
distribution to apply spatial constraints on the activity ori-
gin [35–38]. The maximum likelihood estimation of activ-
ity and attenuation (MLAA) is an effective algorithm for 
simultaneous reconstruction [37]. However, the high noise 
level in the μ-map and the crosstalk between the activity 
and attenuation distribution are the main limitations of the 
MLAA algorithm, currently suffering from insufficient tim-
ing resolution of PET systems. To overcome the limitations 
of MLAA, we proposed a DL-based approach and improved 
the accuracy of the MLAA μ-map and the corresponding 
activity image (λ) [31–33]. Moreover, because the MLAA 
μ-maps are generated using monoenergetic 511-keV annihi-
lation photons, metal artifacts caused by low-energy photon 
starving in X-ray CT are not observed in the DL-enhanced 
MLAA μ-maps [14].

Another limitation of the MLAA AC method is the 
chicken-egg dilemma of the scatter estimation [39]. Scatter 
event distribution needs to be known to conduct the MLAA. 
However, estimating scatter events requires μ-maps. Thus, 
scatter events were derived from CT μ-maps (μ-CT) and 
assumed to be known in our previous studies [31, 32]. This 
is a critical limitation.

This study’s purpose is three-fold. The first is to inves-
tigate whether the scatter distribution estimated from NAC 
PET activity images using DL is compatible with that esti-
mated using the CT and the single-scatter simulation (SSS) 
algorithm [1, 2]. The second is to compare the two emis-
sion-only approaches (NAC and MLAA) proposed for the 
DL-based whole-body PET AC. Finally, the study addresses 
whether the accuracy of the DL-based whole-body PET AC 
improves by combining the NAC and MLAA approaches.

Materials and methods

Dataset

Image data from 150 oncology patients who under-
went the 18F-FDG (n = 100; 38 men and 62 women; age, 
57.3 ± 14.1 years) or 68 Ga-DOTATOC (n = 50; 29 men and 
21 women; age, 53.5 ± 14.2 years) PET/CT scans were used 
for the training and testing of the neural network. The dataset 
was divided into training, validation, and test sets, as sum-
marized in Table 1. The networks were trained separately for 
each tracer. Whole-body PET/CT scans were acquired using 
a Biograph mCT 40 scanner (Siemens Healthineers, Knox-
ville, TN; timing resolution = 580 ps) 60 min after the intra-
venous injection of the tracer (5.18 MBq/kg for 18F-FDG and 
2.78 MBq/kg for 68 Ga-DOTATOC). Six-eight bed positions 
were used to cover the upper body in the PET scans with a 
scan time of 1 min per position. The institutional review 
board of our institute approved the retrospective use of the 
scan data and waiver of the need for informed consent.

The CT images, reconstructed in a 512 × 512 × 100 
matrix and 1.52 × 1.52 × 2.03 mm voxel size, were con-
verted into the μ-map for 511-keV photons (μ-CT; 
200 × 200 × 109; 4.07 × 4.07 × 2.03 mm). Ground truth 
PET activity images (λ-CT) were reconstructed using an 

Table 1   The number of patients included in the training, validation, 
and test sets

* Patients with metallic hip implants (n = 2) were included only in the 
test set for 68 Ga-DOTATOC

Tracer Train Validation Test Total

18F-FDG 60 20 20 100
68 Ga-DOTATOC 33 7 10* 50
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ordered-subset expectation maximization (OSEM) algo-
rithm (3 iterations and 21 subsets, 5-mm Gaussian post-
filter) with CT-based AC and SC. The CT-based scatter 
estimates were generated using the SSS algorithm. The 
correction factors were generated, and the OSEM recon-
struction was performed using the vendor-supplied e7 
toolkit. The size of the reconstructed PET images was 
200 × 200 × 109 (4.07 × 4.07 × 2.03 mm voxel size) for 
each bed position.

The NAC PET activity images (λ-NAC) were recon-
structed using the OSEM algorithm with the same recon-
struction parameters, but AC and SC were not applied. The 
numbers of iteration and subset for MLAA reconstruc-
tion producing activity and attenuation maps (λ-MLAA 
and μ-MLAA) were 6 and 21, respectively. A boundary 
constraint was applied during the μ-MLAA estimation to 

resolve the problem of global scaling that is not unique in 
MLAA [37].

Network architectures

Convolutional neural networks (CNNs) were designed to 
predict the μ-CT, ground truth, from λ-NAC, λ-MLAA, 
and μ-MLAA (Fig. 1). The architecture of the CNNs was 
based on U-net [40], which is widely used in medical 
image processing analysis [41–44]. The CNNs’ architec-
tures, except for the number of the input channel, were the 
same as those used in our previous study [31]. Network 
architecture detail is provided in Fig. 1 in [31]. The CNN’s 
inputs were the 32 × 32 × 32 matrix patches extracted from 
λ-NAC, λ-MLAA, and μ-MLAA. The training labels were 
equally sized patches from the μ-CT at that location. We 

Fig. 1   Strategies for attenuation 
(μ) map generation using CNNs. 
Non-attenuation-corrected 
PET activity image (λ-NAC) 
was used as input for the CNN 
in (A). Results (λ-MLAA and 
μ-MLAA) of the MLAA simul-
taneous reconstruction algo-
rithm were used as CNN inputs 
in (B) and (C). All the λ-NAC, 
λ-MLAA, and μ-MLAA were 
used as CNN inputs in (D). 
Scatter distributions estimated 
using μ-CT were used in (B), 
but those estimated using the 
μ-map generated by CNNNAC 
(CNN output in A) were used 
in (C) and (D). Here, “Em” and 
“Sc” stand for the emission and 
scatter sinograms
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stacked the inferences from the input patches on the image 
matrix to construct the output image with the trained net-
work (μ-CNN). Patch-based min–max normalizations were 
performed on λ-NAC, λ-MLAA, and μ-MLAA before 
feeding the input patch to the network.

Figure 1 compares the μ-map generation strategies used 
in this study. The CNNNAC takes λ-NAC as the input to 
produce a synthetic μ-map, μ-CNNNAC (Fig. 1A). The 
CNNMLAA* takes λ-MLAA* and μ-MLAA*, corrected for 
scatter using μ-CT, and produces μ-CNNMLAA* (Fig. 1B; 
a method used in our previous studies [31, 32]). The 
CNNMLAA takes the λ-MLAA and μ-MLAA corrected for 
scatter using μ-CNNNAC and produces the μ-CNNMLAA 
(Fig. 1C). Finally, the CNNMLAA+NAC takes λ-NAC along 
with λ-MLAA and μ-MLAA to produce μ-CNNMLAA+NAC 
(Fig. 1D). Note that the third and final methods do not 
require μ-CT, as scatter correction is performed using 
μ-CNNNAC.

Network training

The L1-norm between the output (μ-CNN) and ground 
truth (μ-CT) was chosen as the loss function for training the 
networks and was minimized using the adaptive moment 
estimation method. A learning rate of 0.001 was used as 
an initial value and decayed every two epochs with rate of 
0.92. We adopted a batch size of 64 patches for all experi-
ments. 3D patches for training the networks were selected 
randomly from the input images. To avoid meaningless com-
putation with blank patches, the 3D patches whose cent-
ers were included in the body were only employed for the 
networks. Approximately 4000 patches for each bed were 
used for training. Each network was trained using a training 
set with a maximum of 200 epochs. When the training loss 
calculated using the validation set did not decrease for con-
secutive 10 epochs, training was stopped, and performance 
of the model was evaluated using the test set. The networks 
were implemented using the TensorFlow library and trained 
using NVIDIA RTX 3090 (24 GB VRAM).

Scatter estimate comparison

We compared the SSS scatter estimates derived from the 
μ-CNNNAC and μ-CT to determine whether the scatter esti-
mates using μ-CNNNAC can solve the chicken-egg dilemma 
in the MLAA. The accuracy of the attenuation and scatter 
estimation was compared in the sinogram space in terms of 
absolute and percentage errors as AC and SC are performed 
in the sinogram space during the MLAA. The MLAA recon-
struction and CNN-enhancement results obtained using scat-
ter estimates from μ-CNNNAC and μ-CT were compared.

Comparison of attenuation and activity estimates

The attenuation and activity estimates obtained using the 
CNNs shown in Fig. 1 were compared to the ground truth 
using three different metrics: the structural similarity index 
measure (SSIM), peak signal-to-noise ratio (PSNR), and 
normalized root mean square error (NRMSE):

where � , � , and c are average, standard deviation, and pre-
defined constant. We used the default function for SSIM 
from MATLAB 2020b. MAX and MSE are the maximum 
intensity and mean square error. xk and x̂k are the k-th voxel 
of generated image and ground truth, respectively. Here, VOI 
is set to the patient body.

The voxel-wise correlation between the DL-based 
approaches and the ground truth was also estimated. The 
mean μ-values of the lungs and the standard uptake value 
(SUV) of lung and bone lesions were also compared to 
assess the accuracy of DL-based approaches further. The 
boundaries of the lungs were segmented from the μ-CT and 
eroded considering the mismatch between the PET and CT 
due to respiratory motion to calculate the mean μ-values 
of the lungs. Additionally, volumes of interest (VOIs) were 
semi-automatically drawn on 23 suspected lung cancer and 
29 suspected bone cancer regions in the 18F-FDG PET scans 
of 20 patients by applying a threshold of 40% of the maxi-
mum SUV on the tumor, determined by averaging the SUV 
of the voxels with an SUV higher than 90% of the SUV 
peak. VOIs were drawn on λ-CT (reference images), and 
these VOIs were utilized in the other reconstructed images 
for evaluating SUV quantification.

Results

Scatter estimation using μ‑CNNNAC

Figure 2 and Supplemental Fig. 1 compare the attenuation 
correction factors (ACFs) and scatter distributions esti-
mated using μ-CT and μ-CNNNAC (μ-map inferred from 
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NAC activity image using CNN as illustrated in Fig. 1A) 
and show the percent and absolute differences between 
them. While the mean squared percent error of the ACF was 
higher than 7% (7.2% ± 4.1%), that of the scatter estimates 
was only 2.5% ± 0.1%, indicating the validity of the scatter 
estimation using the μ-CNNNAC. Figure 3A compares the 
μ-MLAA* and μ-MLAA, which are the μ-maps estimated 
using the MLAA simultaneous reconstruction algorithm for 
which the scatter was estimated from μ-CT and μ-CNNNAC, 
as illustrated in Fig. 1B and C. As shown in Fig. 3B that 
compares μ-CNNMLAA* and μ-CNNMLAA, the difference 
between μ-MLAA* and μ-MLAA was further reduced by 
applying the CNN to the output images of the MLAA. The 
data shown in Figs. 2 and 3 have been obtained using 18F-
FDG PET scans.

Attenuation maps

Figure 4 and Supplemental Figs. 2 show the sagittal and 
coronal slices of the CNN models’ input, output, and ground 
truth images for the 68 Ga-DOTATOC and 18F-FDG studies, 
respectively. Although the bone structures were not clearly 
resolved and the noise levels were high in the input images 
(λ-MLAA, μ-MLAA, and λ-NAC), the CNNs provided 
nearly noiseless μ-maps with improved bone delineation. 
As indicated by the orange arrows in Fig. 4, the CNN with 
only NAC input (CNNNAC) generated less accurate bone 
structures in the μ-maps for the 68 Ga-DOTATOC studies 
showing lower bone uptake and higher noise level than in 
the 18F-FDG studies. The best results for recovering the fine 
bone structures were obtained by providing all λ-MLAA, 
μ-MLAA, and λ-NAC to the CNN (CNNMLAA+NAC), as 
indicated by the white arrows in Fig. 4 and Supplemental 
Figs. 2.

Figure 5 shows the advantages of providing λ-MLAA 
and μ-MLAA as inputs to the CNN. The μ-map genera-
tion errors, indicated by orange arrows in the μ-CNNNAC, 
were observed less frequently in the μ-CNNMLAA and 
μ-CNNMLAA+NAC, which also resulted in better soft tis-
sue and fat contrast than μ-CNNNAC, as shown in Fig. 5C. 

However, abdominal air was often misclassified as fat or soft 
tissue in all the CNN models.

The voxel-wise correction and quantitative measure-
ments of the similarity between μ-CNNs and μ-CT con-
firmed the qualitative comparison results. As shown in 
Table 2 and Supplemental Figs. 3 and 4, the μ-CNNMLAA 
and μ-CNNMLAA+NAC achieved better voxel-wise correla-
tion, higher PSNR and SSIM, and lower NRMSE than the 
μ-CNNNAC, which showed an especially poor correlation 
between the μ-values corresponding to the lung tissues. Fig-
ure 6 shows the percent errors of μ-CNNs relative to the μ-
CT in whole lung tissues, indicating the overestimation and 
increased variability of μ-values using the CNNNAC in the 
lung. The difference in the performance of the CNN mod-
els was smaller in the 68 Ga-DOTATOC than in 18F-FDG 
studies. Figure 7 shows the μ- and λ-maps of a lung cancer 
patient who underwent 18F-FDG PET/CT study, demonstrat-
ing that the abnormal hot uptake in lung lesions prevented 
proper inference of the μ-map by CNNNAC.

Activity images

The activity images corrected for attenuation using 
μ-CNNMLAA and μ-CNNMLAA+NAC were also superior to 
those corrected using μ-CNNNAC in terms of their similarity 
to λ-CT, as shown in Supplemental Figs. 5, 6, and 7 (voxel-
wise correlation plots, percent difference maps, and quan-
titative similarity measures (PSNR, SSIM, and NRMSE) 
between λ-CNNs and λ-CT) and Table 3. The improvement 
in the similarity with λ-CT achieved by employing λ-NAC 
in addition to λ-MLAA and μ-MLAA was not significant 
(CNNMLAA versus CNNMLAA+NAC).

Supplemental Fig.  8 shows the correlation between 
the SUV measurements in lung cancer lesions. λ-CT 
shows the highest correlation with λ-CNNMLAA+NAC. 
Although λ-CNNNAC was also correlated with λ-CT, 
it showed a higher positive bias and variability in the 
regional SUV than the other methods (percent error: 
λ-CNNNAC = 5.45% ± 7.88%; λ-CNNMLAA = 1.21% ± 5.74%; 
λ-CNNMLAA+NAC = 1.91% ± 4.78%). Supplemental Fig. 9 

Fig. 2   Comparison of attenua-
tion correction factors (ACFs) 
and scatter distributions derived 
from μ-CT and μ-CNNNAC. A 
ACF and B Scatter estimates
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shows the correlation between SUV measurements in bone 
cancer lesions, showing no significant differences among 
results obtained using the different methods (percent error: 
λ-CNNNAC = 1.37% ± 5.16%; λ-CNNMLAA = 0.23% ± 3.81%; 
λ-CNNMLAA+NAC = 0.05% ± 3.49%).

Discussion

This study compared two approaches using only the emis-
sion PET data and a CNN to correct the attenuation of anni-
hilation photons in PET: one used a CNN to generate μ-maps 
from NAC PET images (μ-CNNNAC), and in the other 
method, CNN was used to improve the accuracy of μ-maps 
generated through MLAA reconstruction (μ-CNNMLAA). It 
also investigated whether the CNN performance is improved 
by combining the two methods (μ-CNNMLAA+NAC) and 
whether μ-CNNNAC would be suitable for providing the scat-
ter distribution required for MLAA reconstruction.

The use of CNN to generate μ-maps from NAC PET 
images is a relatively straightforward approach because it 
does not require special image reconstruction algorithms 

Fig. 3   μ-maps obtained using MLAA (A) and CNN applied to 
MLAA output images (B). No scatter correction was applied for the 
μ-maps in the first columns. Scatter was estimated using the μ-CT for 
the μ-maps in the second columns and using the μ-CNNNAC in the 
third columns

Fig. 4   CNN models’ input, output, and ground truth images for the 
68 Ga-DOTATOC PET study in a 57-year-old male patient

1838 European Journal of Nuclear Medicine and Molecular Imaging (2022) 49:1833–1842
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such as MLAA. Therefore, this method can be applied to 
any PET data, regardless of the PET scanner’s time-of-flight 
measurement capability. Additionally, this method allows for 
joint attenuation and scatter correction [26]. The feasibility 
of this method for brain PET studies using 18F-FDG and 
other tracers has been demonstrated by several groups using 
various DL models, including convolutional autoencoder 
and generative adversarial networks [20, 24, 25]. Recently, 
Dong et al. demonstrated the potential of this method in 
whole-body 18F-FDG PET studies. However, the errors in 

their study were large in the lung, mainly due to the hetero-
geneity and inter-individual variability of lung density [25]. 
The current study also highlights similar limitations of this 
method for whole-body PET scans, especially in the lung 
and metallic implants (Figs. 5, 6 and 7).

However, the μ-CNNNAC was useful in estimating the 
scatter distribution needed when applying the MLAA. 
Although the ACF error between the μ-CT and μ-CNNNAC 
was relatively high, the error of the scatter distribution in 
the sinogram space, estimated using the μ-maps, was only 
2.5% on average. Therefore, the μ-CNNNAC appears to be a 
promising solution for addressing the chicken-egg dilemma 
[39] in MLAA reconstruction.

The results of this study show the superiority of the 
μ-CNNMLAA over the μ-CNNNAC in many ways. Bone and 
metallic implants were better delineated, and the error in 
tissue classification was smaller when applying μ-CNNMLAA 
(Figs. 4, 5, 6 and 7). This resulted in the improvement of the 
similarity between the reconstructed images and the ground 
truth and the accuracy in the quantitation of tumor SUVs 

Fig. 5   μ-maps generated 
using different CNN inputs. 
Transaxial slices from 18F-FDG 
PET scans of the lung (A), liver 
(B), and kidney (C) levels and 
coronal slices from a 68 Ga-
DOTATOC study with a metal-
lic hip implant

Table 2   Summary of voxel-wise correlation between μ-CNNs and μ-
CT

CNN model 18F-FDG 68 Ga-DOTATOC

Regression line R2 Regression line R2

CNNNAC y = 0.90 x + 0.08 0.77 y = 0.88 x + 0.01 0.82
CNNMLAA y = 0.92 x + 0.07 0.90 y = 0.91 x + 0.01 0.86
CNNMLAA+NAC y = 0.94 x + 0.06 0.90 y = 0.92 x + 0.01 0.87

Fig. 6   Percent errors of the 
μ-CNNs relative to the μ-CT 
in the lung. A 18F-FDG and B 
68 Ga-DOTATOC
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(Supplemental Figs. 5-7). The difference in the accuracy 
between the μ-CNNMLAA and μ-CNNNAC was most pro-
nounced in the lungs, as shown in Figs. 6 and 7. The differ-
ence in performance between the CNNMLAA and CNNNAC 
approaches was less significant in the 68 Ga-DOTATOC 
PET studies than in the 18F-FDG, potentially because of the 
erroneous estimation of the μ-map using the CNNNAC in 
the lung was mainly caused by the abnormal hot uptake in 
lung lesions (Fig. 7). This was less prevalent in the 68 Ga-
DOTATOC PET studies than in 18F-FDG PET.

Interestingly, the CNNMLAA was able to predict metal-
lic hip implants, despite there being no implants in any of 
the cases included in the training set (Fig. 5D). Moreover, 
streaking artifacts appearing around the metal on the μ-CT 
due to low-energy photon starvation were not observed in 
the μ-CNNMLAA. However, the μ-values of the metallic 
implants in the μ-CNNMLAA were slightly lower than those 

in the μ-CT, leading to an ~ 5% SUV difference in the lesions 
near the metallic implants. This is thought to be due to the 
lack of training data as high as those of the metal implants 
with the μ-values. Therefore, further investigation with 
the training and test sets, including many metallic implant 
cases, which are properly corrected for metal artifacts in 
CT, is necessary to improve the quantitative accuracy of the 
CNNMLAA approach.

No significant improvement in the similarity with the λ-
CT by combining the CNNNAC and CNNMLAA approaches 
was observed in this study. Additional λ-NAC input to the 
CNN, along with the λ-MLAA and μ-MLAA, resulted in a 
better prediction of fine bone structures in the μ-maps (Fig. 4 
and Supplemental Fig. 2). However, the improvement of the 
quantitative similarity measures on the μ- and λ-maps by 
the combined inputs was not as evident as the difference 
between the CNNNAC and CNNMLAA approaches (Fig. 6 and 
Supplemental Figs. 3-9).

An alternative approach for AC is the MRI-based meth-
ods, including the segmented-based and the atlas-based 
method [6, 45]. The use of CNN combined with MLAA 
in AC shows same or better performance compared to the 
MRI-based AC methods. Martinez-Moller et al. and Arabi 
et al. reported SUV quantification in the osseous lesions, 
which were an average decrease of 8.0% ± 3.3% using the 
segmentation-based method and an average increase of 
1.5% ± 3.5% using the atlas-based method, respectively [6, 
45]. The errors in CNNMLAA and CNNMLAA+NAC were only 

Fig. 7.   18F-FDG PET/CT case 
with the inaccurate μ-map esti-
mation by the CNNNAC due to 
hot uptake in lung lesions

Table 3   Summary of voxel-wise correlation between λ-CNNs and λ-
CT

CNN model 18F-FDG 68 Ga-DOTATOC

Regression line R2 Regression line R2

CNNNAC y = 1.01 x + 0.00 0.98 y = 1.05 x + 0.00 0.99
CNNMLAA y = 1.00 x + 0.00 0.99 y = 1.03 x + 0.00 0.99
CNNMLAA+NAC y = 1.00 x + 0.00 0.99 y = 1.02 x + 0.00 0.99
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0.23% ± 3.81% and 0.05% ± 3.49%. Martinez-Moller et al. 
reported that SUV in the lung lesions was underestimated, 
with an average decrease of 1.9% ± 2.3% [6], while errors 
in CNNMLAA and CNNMLAA+NAC were 1.21% ± 5.74% and 
1.91% ± 3.49%. No evaluation for lung lesions was not per-
formed in Arabi et al..

Different neural networks were trained and used individu-
ally in this study for two tracers to compare the emission-
only approaches under the best conditions for each tracer. 
However, this resulted in the overfitting of the neural net-
works suitable only for a specific tracer and requiring net-
work retraining for new tracers. We tried training the U-net 
model with two tracers to create a more general model, but 
the results were worse than the individual training results. 
Further investigation is required to develop a general model 
that provides the optimal performance for all tracers.

Summary and conclusion

We compared two DL-based approaches to PET AC that 
use only emission data. The use of CNNNAC for scatter esti-
mation successfully addressed the chicken-egg dilemma 
in MLAA reconstruction. However, the CNNMLAA outper-
formed the CNNNAC. The benefits of combining these two 
approaches were not significant.
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