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Abstract
Purpose Since accurate lung cancer segmentation is required to determine the functional volume of a tumor in [18F]FDG PET/CT,
we propose a two-stage U-Net architecture to enhance the performance of lung cancer segmentation using [18F]FDG PET/CT.
Methods The whole-body [18F]FDG PET/CT scan data of 887 patients with lung cancer were retrospectively used for network
training and evaluation. The ground-truth tumor volume of interest was drawn using the LifeX software. The dataset was
randomly partitioned into training, validation, and test sets. Among the 887 PET/CT and VOI datasets, 730 were used to train
the proposed models, 81 were used as the validation set, and the remaining 76 were used to evaluate the model. In Stage 1, the
global U-net receives 3D PET/CT volume as input and extracts the preliminary tumor area, generating a 3D binary volume as
output. In Stage 2, the regional U-net receives eight consecutive PET/CT slices around the slice selected by the Global U-net in
Stage 1 and generates a 2D binary image as the output.
Results The proposed two-stage U-Net architecture outperformed the conventional one-stage 3D U-Net in primary lung cancer
segmentation. The two-stage U-Net model successfully predicted the detailed margin of the tumors, which was determined by
manually drawing spherical VOIs and applying an adaptive threshold. Quantitative analysis using the Dice similarity coefficient
confirmed the advantages of the two-stage U-Net.
Conclusion The proposed method will be useful for reducing the time and effort required for accurate lung cancer segmentation
in [18F]FDG PET/CT.
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Introduction

Lung cancer is one of the most common types of can-
cers and is the leading cause of cancer-related deaths in
the USA [1] as well as other countries. Optimal and
personalized management of lung cancer depends on
the histological subtype, molecular characteristics, and
tumor stage [2]. [18F]fluorodeoxyglucose ([18F]FDG)
positron emission tomography/computed tomography
(PET/CT), which allows visualization of the molecular
features and anatomical abnormalities of the target le-
sion, is considered as an essential medical examination
for lung cancer diagnosis and staging. Therefore, many
guidelines recommend the use of [18F]FDG PET/CT for
the evaluation of patients suffering from lung cancer
[3–5].

Recently, deep learning algorithms have been actively
applied to various tasks in medical image processing
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and analysis, including lesion and organ detection, seg-
mentation, and image restoration [6–15]. Furthermore,
attempts have been made to apply machine learning
algorithms to [18F]FDG PET/CT analysis for lung can-
cer. In particular, various studies have been conducted
to improve lesion detectability and predict the character-
istics of the lesions [16–19]. Furthermore, accurate tu-
mor segmentation is required to determine the functional
volume of tumors in PET/CT [20]. However, studies
related to improving the accuracy of tumor segmentation
are limited [21].

U-Net [22] is one of the most widely used deep learn-
ing networks for medical image segmentation [23–26].
The deeply supervised encoder–decoder network, which
crops and copies feature maps from the encoding units
to the decoding units, processes the entire image in the
forward pass to directly generate the segmentation maps
[27, 28]. The two-dimensional (2D) U-Net, which con-
verts 2D image slices into 2D slices, is simple and fast,
but occasionally introduces discontinuity artifacts while
stacking 2D network outputs to generate three-
dimensional (3D) volume [29]. The discontinuity artifacts
can be mitigated by employing 3D U-Nets [30]. However,
they are computationally expensive and require a consid-
erable computer memory. Therefore, the limited computa-
tion resources, which are generally used to process the
large 3D datasets, would lead to suboptimal network ar-
chitecture and training.

Therefore, in this study, we propose a two-stage U-Net
architecture to enhance the lung cancer segmentation perfor-
mance in FDG PET/CT. In this method, a global 3D U-Net
that may be suboptimal for the given task is applied to select
the candidate lung cancer regions, and 2.5D U-Net, which is a
compromise between the 2D and 3D U-Nets and employs a
multislice input, is applied for the final lung cancer segmen-
tation. In the following sections, the details of the two-stage
U-Net architecture and its training and testing methods are
described.

Materials and Methods

Datasets

The whole-body [18F]FDG PET/CT scan data of 887 patients
with lung cancer were retrospectively used for network train-
ing and evaluation. The retrospective use of the scan data and
waiver of consent were approved by the institutional review
board of our institution. The patients fasted for at least 6 h
prior to image acquisition, resulting in blood glucose levels
that were < 140 mg/dL. [18F]FDG (5.18 MBq/kg) was
injected intravenously into the patients, and PET scans were
performed 60 min post injection using Biograph mCT40 or
mCT64 PET/CT scanners (Siemens Healthineers, Knoxville,
TN). The PET scan data were obtained from the base of the
skull to the proximal thigh, followed by a CT scan obtained
for attenuation correction and anatomical localization. PET
images were reconstructed using an iterative algorithm
(ordered-subset expectation maximization, iteration number
2 and 21 subsets) with an image matrix size of 200 × 200 ×
~200 and voxel size of 2.43 × 2.43 × 4.95 mm3. The size of
the reconstructed CT images was 512 × 512 × ~ 490 (0.98 ×
0.98 × 2.0 mm3).

Ground-truth tumor volume-of-interests (VOIs) were
drawn semi-automatically [31] using the LifeX software
(https://www.lifexsoft.org/, version 4.0) [32]. Spherical
VOIs were manually drawn on the PET images to include
the primary tumor lesions; the metabolically active tumor
regions in the spherical VOI were segmented by applying an
adaptive threshold depending on the tumor and background
intensities [33].

The dataset was randomly partitioned into training, valida-
tion, and test sets. Among the 887 PET/CT and VOI datasets,
730 were used to train the proposed models, 81 were used as
the validation set, and the remaining 76 were used to evaluate
the model.

Prior to network training and evaluation, the image size
was adjusted because the voxel sizes and dimensions of the

Fig. 1 Two-stage U-Net
architecture
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PET and CT images were different. Because the VOIs for the
primary tumor were segmented from the PET images, the
images and voxel sizes of the CT images matched well with
those of the PET images using trilinear interpolation.

Model Architecture

As described earlier, we designed a two-stage U-Net architec-
ture to enhance the tumor segmentation performance (Fig. 1).
In Stage 1, a global U-Net receives 3D PET/CT volume as the
input and extracts the preliminary tumor area, thus generating
a 3D binary volume as the output. In Stage 2, a regional U-Net
receives eight consecutive PET/CT slices around the slice se-
lected by the Global U-net in Stage 1 and generates a 2D
binary image as the output.

Figure 2 shows the detailed structure of the global U-Net
used in Stage 1. We designed the detailed structure of Global
U-Net based on a 3D U-Net [30] that demonstrated good
performance in our previous works [23, 24, 34–36]. Rather
than using the classification model, a segmentation model was
used in stage 1. If a slice is included in the 3D tumor volume
that Global U-Net produces, the index of slice is passed onto
Stage 2, where the regional U-Net that will be described in the
next section was applied for the final lung cancer
segmentation.

To reduce the learning time and memory consumption, the
PET/CT images were cropped to have dimensions of 80 × 128
× 160 with a focus on the lungs. The initial convolution block
comprised six channels, thus providing twice the number of
channels for each down-sampling. The contracting path com-
prised two convolutional blocks. Each convolution block com-
prised 3 × 3 × 3 convolution layers, with batch normalization
and leakyReLU with a negative slope of 0.2 as an activation
function. In addition, a 2 × 2 × 2 max pooling operation with
stride 2 was used for down-sampling. In the extracting path, the
number of channels was reduced by 1/3 after concatenation.

Figure 3 shows the detailed structure of the regional U-Net
used in Stage 2. The regional U-net receives eight consecutive
slices centered on the slice predicted to have lung cancer in
stage 1. Compared to the Global U-Net of Stage 1, the input
size of the regional U-Net of Stage 2 is small. Therefore, in
Stage 2, we designed a more sophisticated and complex net-
work model, i.e., U-net, based on DenseNET [37].

We used 2 × 2 max pooling with stride 2 for down-
sampling to preserve the features between slices and dropout
layers of 0.1 to prevent overfitting. The bridge section
connecting the contacting and expansion paths comprised
three convolution blocks to supplement a small retractive field
of a 3 × 3 × 3 convolution layer. After 2D up-sampling, a 3 × 3
× 3 convolution layer reduces the number of channels that are
equal to the number of channels being skipped.

Fig. 2 Global 3D U-Net in Stage
1

Fig. 3 Reginal 2.5D U-Net in
Stage 2
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Fig. 4 A case of a 66-year-old male patient with lung cancer. (a) CT, (b) PET, (c) Ground truth, (d) Stage 1 output, and (e) Stage 2 output

Fig. 5 A case of a 77-year-old male patient with r/o lung cancer. (a) CT, (b) PET, (c) Ground truth, (d) Stage 1 output, and (e) Stage 2 output
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Network Training and Evaluation

As a loss function for network training and performance
indicator for network evaluation, we used the Dice sim-
ilarity coefficient, which indicates the degree of overlap
between the ground-truth and tumor regions segmented
by deep neural networks.

Each model learns end-to-end mapping between the
PET/CT images and VOI segmented by nuclear medi-
cine physicians. Each layer was updated using error
back-propagation with an adaptive moment estimation
optimizer (ADAM), which is a stochastic optimization
technique [38]. The exponential decay rates for the mo-
ment estimates β1 and β2 are 0.9 and 0.999, respec-
tively, with ε = 10-8.

The initial learning rate of the global U-Net was 0.1 and
batch size was 6. The number of epochs was 45, and the
learning rate was reduced by 0.1 times at 25 and 35 epochs.
After the last sigmoid layer, we set the threshold to 0.6, which
causes the validation set to lose its smallest value.

The initial learning rate of the regional U-Net was
0.001, and the batch size was 3. The number of epochs
was 35, and the learning rate was reduced by half after
every 5 epochs. After the last sigmoid layer, we set the
threshold to 0.7, which causes the validation set to lose
its smallest value.

Results

As shown in Figs. 4 and 5, the two-stage U-Net architecture
proposed in this study outperformed the conventional one-
stage 3D U-Net (Global U-Net in Stage 1) in primary lung
cancer segmentation. The detailed margin of tumors, deter-
mined by manually drawing spherical VOIs and applying an
adaptive threshold, was well predicted by the two-stage U-Net
model.

Quantitative analysis using the Dice similarity coeffi-
cient confirmed the advantages of the two-stage U-Net.
The mean and median Dice similarity coefficients ob-
tained by applying the one-stage and two-stage U-Net
architectures are summarized in Table 1: The two-stage
U-Net showed higher mean and median Dice similarity
coefficients than those of the one-stage U-Net. It was
observed that there is a difference > 0.1 in mean and
median Dice similarity coefficients. As shown in Fig. 6,
in most cases, the proposed two-stage U-Net yielded a
Dice similarity coefficient of 0.75 or greater. The Dice
coefficient of 1-stage and 2-stage was significantly dif-
ferent with P value of 0.028 (< 0.05) when paired t-test
was performed.

Both methods take less than 1.5 s for data loading and
segmentation. The difference in computation time was not
significant.

Discussion

Low standard uptake value (SUV) in lung cancer is the
main cause of segmentation failure. Figure 7 shows an
example of an unsuccessful lung cancer segmentation by
the network. In this case, the maximum and mean SUVs
in the lung cancer were only 1.00 and 0.75, respectively,
and the global U-Net in Stage 1 could not detect the
cancer. Table 2 shows the maximum and mean SUVs of
three missed cases (Dice similarity coefficient = 0) by the
two-stage U-Net, which are compared with the average
maximum and mean SUVs of all cases in the test set.
SUV level seems to mainly affect stage 1 (actually, zero
output was obtained in five cases with low SUV), and
stage 2 seems to contribute to finding more detailed

Table 1 Performance comparison
between Stage 1 and Stage 2 U-
Net approaches

Method Mean Dice coefficient Median Dice coefficient

1-Stage: Global U-Net only 0.74 0.86

2-Stage: Global + Regional U-Nets 0.78 0.90

Fig. 6 Histograms of Dice coefficient for test set
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boundaries for tumor. The number of missed cases in 1-
stage and 2-stage were five and three. In three cases, nei-
ther 1-stage nor 2-stage detected the tumors. In other two
cases, 1-stage missed the tumor (Dice coefficient = 0), but
2-stage successfully segmented the tumors from the out-
put slices of 1-stage.

Occasionally, the two-stage U-Net detected lymph nodes
and distant metastases, although they were not included in the
training set. Training networks with additional data with
ground-truth segmentation of lymph nodes and distant metas-
tasis are likely to enhance the usefulness of the proposed
method.

One of the limitations of this study is that the final output of
the proposed method a 2D slice rather than a 3D volume. This
can lead to discontinuity of binary segments in coronal and
sagittal slices.

There is room for further improvement in segmentation
performance. In this study, only the usefulness of a 2-stage
network was investigated. Further investigation to improve
and optimize the network architecture will be necessary.
Because lung cancer occupies a very small part of the body,
small errors cause large degradation in DSC. Therefore, lung
segmentation shows lower DSC compared to other segmenta-
tion tasks.

Conclusion

In this study, we developed an automatic deep-learning-based
[18F]FDG PET/CT lung cancer segmentation method. The
proposed 2-Stage U-Net model achieves a Dice similarity co-
efficient of 0.78 for the test set. The proposed method will be
useful for reducing the time and effort required for accurate
lung cancer segmentation in [18F]FDG PET/CT.
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Fig. 7 A false negative case. (a) CT, (b) PET, and (c) Ground truth

Table 2 SUV means and standard deviations (STDs) of the cases with
zero Dice coefficients

Test set Case 1 Case 2 Case 3

SUV mean 4.23 1.25 1.28 0.76

SUV STD 1.08 0.16 0.13 0.09
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