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Abstract
Objective. Onemajor limiting factor for achieving high resolution of positron emission tomography
(PET) is a Compton scattering of the photonwithin the crystal, also known as inter-crystal scattering
(ICS).We proposed and evaluated a convolutional neural network (CNN)named ICS-Net to recover
ICS in light-sharing detectors for real implementations preceded by simulations. ICS-Net was
designed to estimate the first-interacted rowor column individually from the 8× 8 photosensor
amplitudes.Approach.We tested 8× 8, 12× 12, and 21× 21 Lu2SiO5 arrays with pitches of 3.2, 2.1,
and 1.2mm, respectively.We first performed simulations tomeasure the accuracies and error
distances, comparing the results to previously studied pencil-beam-based CNN to investigate the
rationality of implementing fan-beam-based ICS-Net. For experimental implementation, the training
dataset was prepared by obtaining coincidences between the targeted rowor columnof the detector
and a slab crystal on a reference detector. ICS-Net was applied to the detector pairmeasurements with
moving a point source from the edge to center using automated stage to evaluate their intrinsic
resolutions.Wefinally assessed the spatial resolution of the PET ring.Main results. The simulation
results showed that ICS-Net improved the accuracy comparedwith the casewithout recovery,
reducing the error distance. ICS-Net outperformed a pencil-beamCNN,which provided a rationale
to implement a simplified fan-beam irradiation.With the experimentally trained ICS-Net, the degree
of improvements in intrinsic resolutions were 20%, 31%, and 62% for the 8× 8, 12× 12, and 21× 21
arrays, respectively. The impact was also shown in the ring acquisitions, achieving improvements of
11%–46%, 33%–50%, and 47%–64% (values differed from the radial offset) in volume resolutions of
8× 8, 12× 12, and 21× 21 arrays, respectively. Significance. The experimental results demonstrate
that ICS-Net can effectively improve the image quality of high-resolution PETusing a small crystal
pitch, requiring a simplified setup for training dataset acquisition.

1. Introduction

The imaging performance of positron emission tomography (PET) relies on the capability of the detector to
measure the time, energy, and position of the interaction of a 511 keVphoton originating from the positron
emitter. Precisemeasurement of the time-of-flight (TOF) enables localization of the source positionwithin the
field of view (FOV), dramatically enhancing the signal-to-noise ratio of the images with TOF reconstruction
(Conti 2011, Surti andKarp 2016). Good energy resolution enables the effective extraction of 511 keV events and
quantitative corrections that utilize energy information (Koral et al 1990, Shao et al 1994). Accurate event
positioning is essential for achieving superior spatial resolution (Surti andKarp 2018). The complicated
relationships between time, energy, and positionmeasurements are optimizedwith the detector design and
material selection depending on the imaging target of the PET scanner.
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Although significant efforts have beenmade to develop high-end detector hardware in recent decades,
machine learning (ML) has recently been highlighted as a promising approach (Gong et al 2020, Arabi et al 2021,
Ullah and Levin 2022).MLhas been established as amajor technique in nuclearmedicine imaging to overcome
high noise and enhance the quantification performance (Kim et al 2019, Lee et al 2019, Yie et al 2020,Hwang et al
2021, Kang et al 2021). At the detector level, the general role ofML is to extract valuable representations from
minimal sampling capabilities. The timing uncertainty is effectively reduced by estimating the photon arrival
timewithMLusing the scintillation signals sampled by oscilloscopes or digitizers (Berg andCherry 2018, Kwon
et al 2021, Onishi et al 2022). Neural networks are popular techniques for 3Dpositioning of photon interactions
withinmonolithic crystals; these networks utilize the distributions of light detected by sparsely aligned
photosensors (Muller et al 2019, Peng et al 2019, Sanaat andZaidi 2020, Gonzalez-Montoro et al 2021).

Inter-crystal scattering (ICS) is one of themajor factors limiting the positioning accuracy of detectors of
which the effect also can bemitigated by usingML.Unlike photoelectric (PE) interactions, an ICS event involves
two ormore energy depositions via Compton scatteringwithin the scintillator block, resulting in incorrect
positioning of thefirst interaction (Shao et al 1996,Miyaoka and Lewellen 2000, Gu et al 2010, Ritzer et al 2017,
Hsu et al 2019, Teimoorisichani andGoertzen 2019, Zhang et al 2019, Kang et al 2021) (figure 1). ICS is
unavoidable because of the substantial cross-sections of the crystalmaterials for Compton scattering of 511 keV
photons, which highlights the importance of ICS recovery. Here, the term ‘ICS recovery’ indicates recovering
the sequence of the photon interactions in an ICS event tofind thefirst interaction. Themethodologies to
recover ICS have been proposed by a number of groups (Abbaszadeh et al 2018, Yang et al 2018, Ritzer et al 2020)
includingML (Wu et al 2020, Nasiri andAbbaszadeh 2021). Some studies experimentally showed the impact of
ML approach on ICS in real detectors. One good example is support vectormachinewhich showed good
classification ability of the photon interaction types based on the light distributions to reject the ICS events
(Yoshida et al 2007). However, rejecting a significant amount of events would lead to a loss in signal-to-noise of
the system. Another group implemented a pre-trained network on afield-programmable gate array to recover
multiple coincidences caused byCompton scatterings (Michaud et al 2015). Both aforementioned studies
utilizedMonte Carlo data for training and then applied the trainedmodel to real detectors or systems, showing
improvements in image quality. However, the appropriateness of preparing supervising datawith simulation is
questionable because the performance ofML is expected to be dependent on how effectively the simulations
reflected the reality. The experimental implementation ofML for ICS recovery of light-sharing detectors needs
to be further studied.

Figure 1. Schematics of (a)PE absorption and (b) ICS event in a 12× 12 crystal array coupled to an 8× 8 photosensor array occurred
by a perpendicularly irradiated single 511 keVphoton. The true deposited energy in the pixelated crystal array and the corresponding
signal amplitude from the photosensor are shown in order. ICS is an event inwhich a 511 keVphoton deposits its energy inmultiple
crystals due toCompton scattering. PE: photoelectric, ICS: inter-crystal scattering.
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A concept of employing the convolutional neural network (CNN) for recovering ICS events in various
pixelated crystal arrays was proposed in our previous study (Lee and Lee 2021).With extensive simulations, the
impacts of CNNon recovery accuracy and spatial resolutionwere evaluated.We focused on light-sharing
detectors because ICS accounts for a high portion of the events in these detectors, while identifying the
interactions is challenging compared to 1-to-1 coupled detectors due to themultiplexed signals from the
interacting crystals. The proposedmethod features event-by-event processing at the detector level and utilizes
the entire ICS events tomaintain sensitivity, rather than rejecting them.When fedwith a photosensor signal
array, the CNN so-called ICS-cNet estimated the first-interacted crystal, resulting in an improvement in the
spatial resolution of PET comprising highly pixelated detectors. Still, the absence of experimental data remained
a limitation.

Building on prior research, this study extends to demonstrate the performance enhancement of real
detectors with CNN.We trained the networkwith experimental data to account for the detector characteristics
which substantially differed from the ideal conditions of theMonteCarlo simulations. The original ICS-cNet
required the labeling of every crystal using pencil-beam irradiation to identify the first interaction, whichwould
be burdensome in reality. Therefore, wemodified the network to select thefirst-interacted row or columnof the
crystal array, reducing the number of data acquisitions fromN2 to 2N for theN×N crystal array. Prior to
experiments, we conducted simulations to validate the rationale of using thismodified network, named ICS-
Net, by comparing its performancewith that of previous ICS-cNet. By combining the simulation results and the
findings in the previous study that shows spatial resolution improvements, replacing ICS-cNet with ICS-Net for
the experiments was justified. For the experimental setup, we assembled the detector arrays and acquired
training datasets using a slab crystal to function as a fan beam, irradiating a specific row or column.We then
evaluated the ICS-Net bymeasuring the intrinsic resolution of the detector pair and the spatial resolution of the
pseudo-PET ring constructedwith a detector pair.

2.Materials andmethods

2.1. Crystal arrays
Wetested three different polishedLu2SiO5 (LSO) crystal arrayswhich differed inpitch andwidth of the crystal
elementswith 20mmcrystal length.The 8× 8, 12× 12, and 21× 21 arrays consistedof crystal elementswith
widths of 3.0, 2.0, and 1.08 mmandpitches of 3.2, 2.1, and 1.2mm, respectively. The side viewof a 12× 12 array is
depicted infigure 3 for example.Diffusive reflectorswere placed between the crystal elements and theouter crystal
block. The total crystal block size, including the crystals and reflectors, was 25.8 mm× 25.8 mm× 20mmfor all
the crystal arrays. Theoccurrence rates of ICS are 34%, 39%, and44%for 8× 8, 12× 12, and 21× 21 arrays,
respectively (Lee andLee 2021).

2.2. ICS-Net
2.2.1. Input and structure
The proposed ICS-Net uses an 8× 8 array of signal amplitudesmeasured by the photosensor as input to predict
the rowor column index of thefirst-interacted crystal (figure 2(a)). Here, the input is the number of optical
photons detected by 8× 8 photosensitive areas normalizedwith themaximumamplitude. The selected 511 keV
photopeak events contain both PE and ICS, undistinguished. The network consists of two convolutional layers
and a fully-connected layer at the end to choose one of theN rows or columns.

2.2.2. Network training
ICS-Net-R (row) and ICS-Net-C (column)were individually trainedwith the same hyperparameters. Adam
optimizer and cross-entropy loss were used for the network training. The learning ratewas initially set as 0.001
and it was dropped by a factor of 0.1 every epoch. The number of channels for two layers (C1,C2)was optimized
as (60, 180), (60, 240), and (70, 350) for the 8× 8, 12× 12, and 21× 21 arrays, respectively, while the number of
epochswas 20 for all arrays. In an ideal symmetric case (e.g. simulation), ICS-Net-R (row) and ICS-Net-C
(column) can share one network, whereas experimental studies require individual training of ICS-Net-R and
ICS-Net-C for several factors. As shown infigure 2(b), both loss function and accuracy convergedwell, which
implies that the network shows good stability.

ICS-Net is amodified version of ICS-cNet designed and tested in a previous study (Lee and Lee 2021). ICS-
cNet directly selects the first interaction among theN2 crystals. Therefore, the output vector sizewasN2× 1, and
the overall structure was identical to that of the ICS-Net.
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2.3. Simulation
2.3.1. GATE setup
Wefirst investigated the feasibility of ICS-Net usingGATE v8.2Monte Carlo andUNIFIEDoptical simulation
(Levin andMoisan 1996, Jan et al 2004). The density, refractive index, and light yield of the LSOwere 7.4 g cm−3,
1.82, and 26 000MeV−1 respectively. The photosensor consisted of an 8× 8 array of 3 mm× 3 mm
photosensitive areas in a 3.2mmpitch. A 25.8 mm× 25.8 mm× 1.5 mmepoxy light guidewas placed to diffuse
the scintillation photons from the crystal elements to the photosensor. The intrinsic uncertainty of optical
photon emission of LSOmaterial was 9% in FWHMat 511 keV. The surfaces of the crystals and light guidewere
polished (σα= 0.1°), 5 sides wrapped by a diffusive reflector with 98% reflectivity.We usedHits output of GATE
to analyze every photon interaction andmanually applied an energy threshold of 400 keV. To generate training
and test datasets, the entire array was uniformly and perpendicularly irradiated by 511 keV photons from the top
side. The number of events per rowor columnwas about 20 000×N in total for theN×N array. 75%, 10%, and
15%of the datasets were used for training, validation, and testing, respectively. Photoelectric andCompton
processes were enabled for 511 keVphoton interaction using the standardmodel, while Scintillation,
OpticalAbsorption, andOpticalBoundarywere enabled for optical photon generation and tracking.

2.3.2. Evaluation of simulated data
By applying the trained ICS-Net to the test dataset as described in section 2.2, wemeasured the accuracies for
selecting the first-interacted crystals for each ICS, PE, and total (ICS+PE) event.We alsomeasured the error
distance between the centers of the true first-interacted crystal and the network output and calculated the 2D
rootmean square error distance (RMSED) for the total events as follows:

Figure 2. Structure and training of ICS-Net. (a) Schematic of applying ICS-Net for ICS recovery using the 8× 8 signal array. The first-
interacted row and columnwere individually determinedwith the respective network. The structure of the ICS-Net-R (row) or ICS-
Net-C (column) is shown below.C1 andC2 denote the optimized number of channels. (b) Loss and accuracy as function of epochs
during the training (example of ICS-Net-R for 8× 8 array simulation).
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where x y,( ) indicates 2Dposition of the true or predicted (with orwithout ICS-Net) crystal for the n th event,
and N indicates the total number of the test events.

Anothermetric, the relative RMSED reduction (RMSEDred), was calculated to evaluate the impact of ICS-
Net relative to the crystal pitch because the pitch intrinsically determines the spatial resolution (the valuewith
the notationNo recov is later explained in section 2.5):

RMSED
RMSED mm RMSED mm

Crystal pitch mm
. 2red

No recov ICS Net[ ] [ ]
[ ]

( )=
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Thesemeasurements were comparedwith those of ICS-cNet presented in a previous study (Lee and Lee 2021)
using the identical datasets.

2.4. Experiment
2.4.1. Training dataset acquisition
The test detectors were assembled using an LSO array (MeishanBoya AdvancedMaterials, China), a
32 mm× 32 mm× 2 mmacrylic light guide, and a digital photon counter (DPC;DPC-3200–22–44; Philips,
USA). A reference detector was also assembled by coupling a 0.75 mmLSO slab crystal to anotherDPC. The
number of scintillation photons detected by the 8× 8DPCpixels was individually read out using the Philips
Technical EvaluationKit with a full-tile neighbor logic enabled (Schulze 2013).

The training and test datasets were acquired using electronic collimation, as shown infigure 3(a). To
irradiate the knownfirst-interacted single row or columnof the test crystal array, we acquired coincidence data
between the test and reference detectors with a 22Na point source placed between the target row or column and
the slab crystal. The distance from the point source to the test and reference crystals were 42 mmand 67mm,
respectively. The effective beamwidth entering the top of the test detector was then calculated to be 0.47 mm
using the ratio of similitude. The reference detector and point sourceweremounted on a 1Dmotorized stage to
automatically irradiate each rowor column in a step size equal to the crystal pitch. An energywindow of 511 keV
± FWHM/2was applied to the dataset, where FWHM indicates the global energy resolution of the test detector
in full-width at half-maximum (19%, 23%, and 31% for 8× 8, 12× 12, and 21× 21, respectively).
Approximately 80 000 coincidence events were acquired after energywindowing for every row or column. To
enlarge the dataset and prevent overfitting, a 2-fold augmentation for ICS-Net-Rwas performed by flipping the
dataset row-wise and assigning them to the samefirst-interacted row. The same procedure was repeated for ICS-
Net-C.

Figure 3.Experimental setup for evaluation of ICS-Net. (a)Training dataset acquisition, (b) intrinsic resolutionmeasurement, and (c)
spatial resolutionmeasurement (also shownwith the photograph (d)).
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The acquired events were used to train (80%), validation (10%) and test (10%) ICS-Net-R and ICS-Net-C of
each crystal array to counter the asymmetric geometry of theDPC channel areas. The networks were trained and
applied individually for each detector to counter the differences in theDPC characteristics such as gain and dark
count rate. The entire experiment was conducted in a temperature-controlled box at 10 °C.

2.4.2. Intrinsic resolutionmeasurement
To evaluate the impact of the ICS-Net on the detector level, wemeasured the intrinsic resolution using the setup
shown infigure 3(b). A 1Dmotorized stagewas placed at themiddle of the facing detector pair tomove a 22Na
point source fromone edge to the center. Themoving step sizes were 0.5, 0.35, and 0.2 mm for 8× 8, 12× 12,
and 21× 21 test detectors, respectively. The trained ICS-Net-R and ICS-Net-Cmodels were applied to the
acquired events to determine the first-interacted crystals. The FWHMs and full-width at tenth-maxima
(FWTMs) of the count profiles acquired by the opposing crystal pairs weremeasured and averaged for each test
detector pair.

The degree of improvement in the intrinsic resolutionwas compared. The intrinsic resolution (Rintr)was
modelled as follows:

R R R R R , 3intr det
2

range
2

180
2

blur
2 ( )= + +


+

where R ,det R ,range R ,180
and Rblur are the resolution determined by crystal pitch, positron range, nonlinearity of

annihilation photon emissions, and blurring factors including ICS, crystalmisidentification, and crystal
penetration (Rahmim et al 2013).We expect to reduce Rblur by applying ICS-Net in this study. The Rintr

improvement was calculated as follows:

R
R R

R
improvement % 100. 4intr

intr,No recov
2

intr,ICS Net
2

intr,No recov

[ ] ( )=
-

´
-

Because the numerator of the right-hand side is equal to R R ,blur, No recov
2

blur,ICS Net
2- - themetric Rintr

improvement indicates the reduction of ICS blurring relative to the resolutionwithout ICS recovery.

2.4.3. Spatial resolutionmeasurement
Apair of detectors asmounted on a 2-axis rotational stage to construct a virtual PET ring prototype (figures 3(c),
(d)). The outer axis rotated one detector whereas the other detector wasfixed to imitate the relative placement of
the two detectors. The inner axis rotated the imaging target to imitate the relationship between the target and
detector pair. Datawere acquired for every pair of outer- and inner-axis placements. The virtual ring consisted of
18 transaxial detectors and one axial detector; thus, the crystal face-to-face distance and axial length of the ring
were 170 mmand 25.8 mm, respectively.

The spatial resolution of the prototype ringwasmeasured using a 3.9μCi 22Na point sourcewith a 0.25 mm
radius encapsulated in a 10 mmplastic cube. The radial offsets of the point sourcewere 0, 2, 4, and 6 cm.Data
were acquired for 3 min for each detector placement pair. Image reconstructionwas based on 3Dordered-subset
expectationmaximizationwith 1 iteration and 18 subsets. Because the point source size was negligible compared
to the image voxel and the attenuation due to the embedding cubewas negligible, we did not apply image
corrections such as normalization and attenuation corrections for the spatial resolutionmeasurement. Finally,
the volumetric resolution (FWHMvol) and its improvement were calculated as follows:

FWHM mm FWHM mm FWHM mm FWHM mm 5vol
3

rad tan axl[ ] [ ] [ ] [ ] ( )= ´ ´

FWHM improvement % 100%, 6vol
FWHM FWHM

FWHM

vol,No recovery vol,ICS Net

vol,No recovery
[ ] ( )= ´

- -

where FWHMrad, FWHMtan, and FWHMaxl denote the radial, tangential, and axial resolutions, respectively, in
the FWHM.

2.5. Comparisonwith the case of no recovery applied
Throughout the simulations and experiments, the results of ICS-Net were comparedwith a practical floodmap-
based crystal assignment, which corresponded to the case without ICS recovery. For each detector, the 2D flood
mapwas generated byweighting the 8× 8 output amplitudes to the respective positions of the photosensor
(DPC) pixels, and integrating the events over the entire irradiations in training data acquisition. Examples of the
floodmaps are presented infigure 4. AVoronoi diagramwas drawn based on the crystal peaks on themap, and
the segments were indexed sequentially.Most of the PE absorptions were populated on the peak, while ICS
appeared between the peaks owing to energy depositions inmultiple crystals. Once generated, the floodmapwas
used as a template to assign the crystal index for every upcoming event.
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3. Results

3.1. Simulation
3.1.1. Detector-level evaluation
ICS-Net yielded approximately two times higher accuracy in selecting the first-interacted crystals of the ICS
events compared to the case of no recovery applied, whereas the crystals of PE events were almost 100% correctly
selected for all configurations (figure 5(a)). Concerning the total events, ICS+PE, ICS-Net yielded accuracy
increments of 10% for all crystal arrays, whereas ICS accounted for 34%, 39%, and 43%of the total events for the
8× 8, 12× 12, and 21× 21 arrays, respectively (Lee and Lee 2021). The accuracy was relatively low for the highly
light-shared array because the photosensor response was insensitive to the difference in the interaction schemes,
making it challenging for the network to learn the pattern accurately. The closely located crystals on the
simulated floodmap of the 21× 21 array shown infigure 4 support this explanation.

Owing to its high accuracy infinding the first interaction, ICS-Net reduced the RMSEDof crystal
positioning, implying a reduction in spatial blurring comparedwith the case without recovery for all arrays
(figure 5(b)). A considerable impact of ICS-Net on the small-pitch array can be expectedwith a highRMSEDred

whichwas defined in equation (2).
Compared with ICS-cNet from a previous study, ICS-Net exhibited lower accuracy in determining the

exact indices of the first-interacted crystals. In contrast, ICS-Net showed smaller RMSED and higher
RMSEDred than ICS-cNet, indicating better improvements in spatial resolution. In figure 6, the normalized
cumulative density functions (CDFs) of the error distance between the true and assigned crystals saturated
into 1more rapidly for ICS-Net than ICS-cNet. The results imply that the crystals were assigned closer to the
true first-interacted crystals for false events with ICS-Net despite its small degradation in accuracy
(corresponding to the probability at error distance= 0 mm).We assume that individual prediction of rows
and columns in ICS-Net served as a double sampling of the signal output, which utilizes twice asmuch
information as ICS-cNet. Additionally, the probability of overfitting is expected to be lowered because
ICS-Net can encode first-interacted row (column) output from various first-interacted column (row),
consequently requiring fewer output labels than ICS-cNet.

3.2. Experiment
3.2.1. Training dataset acquisition
Figure 7 shows examples of irradiating a single row of test detectors for labeling. For every acquisition, we
confirmed the geometrical alignment of the setup by generating afloodmap. The bold peaks in the line indicate

Figure 4. Floodmaps of 8× 8, 12× 12, and 21× 21 detectors obtained from simulation (upper) and experiment (lower), which are
practically used for event positioningwithout ICS recovery.
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the irradiated crystals in the labeled row. The peaks in the adjacent rows also appeared,more significantly for the
smaller-pitch array.Wrong irradiation owing to the limitation in the precision of the detector alignment would
have contributed to these peaks alongwith ICS events sharing the energy largely with the adjacent rows.

3.2.2. Intrinsic resolution
ICS-Net exhibited shaper count profiles with higher profile intensities than the case of no recovery (figure 8),
indicating the decrease in count leakage into other crystal pairs due tomispositioning. Consequently, reductions
in the FWHMand FWTMwere observed by applying ICS-Net (table 1). The Rintr improvement due to ICS
recoverywas higher for the smaller-pitch array, whichwas in good agreement with the findings in the
simulation. ICS-Net effectively alleviated ICS blurring for small-pitch arrays, where the ICS accounted for a
large proportion of the photon interaction types. In addition, the practical floodmap-based assignment for the
21× 21 array was degradedwith poorfloodmap quality of which the crystals were hardly resolved as shown in
figure 4.

3.2.3. Spatial resolution
The reconstructed images andmeasured FWHMand FWTMvalues of the 22Na point source acquisitions for
various radial offsets are shown infigure 9. A reduction in the tangential blurringwaswell observed, particularly

Figure 5. Simulation results of (a) accuracy and (b)RMSEDof ICS-Net, ICS-cNet, and no recovery applied.

Figure 6.NormalizedCDFs of error distance from the truefirst-interacted crystal by applying ICS-cNet, ICS-Net, andwithout
recovery to (a) 8× 8, (b) 12× 12, and (c) 21× 21 detectors.
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Figure 7.Examples of irradiating a single row of the (a) 8× 8, (b) 12× 12, and (c) 21× 21 arrays using a slab crystal for labeling the
first-interacted row.

Figure 8.Count profiles of (a) 8× 8, (b) 12× 12, and (c) 21× 21 arrays obtained from the experimentalmeasurement of intrinsic
resolution. The colors indicate the row indices of the opposing crystal pairs.
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for the small-pitch array. A similar effect was found for axial blurring but not shown in this paper. As the radial
offset increased, the parallax error resulted in awide point spread along the radial axis as the offset from the
center increased, thusminimizing the impact of ICS recovery on the radial resolutions.However, ICS-Net
achieved enhancements in the spatial resolution for almost all detector designs and radial offsets. As expected
from the simulation and intrinsic resolution results in the previous sections, the 21× 21 array showed the largest
degree of enhancement compared to the case of no recovery. The volume FWHM improvements defined in
equation (6)were significant for the small-pitch arrays in the overall FOV (table 2).

Figure 9. Spatial resolutionmeasurement of the PET rings. (Left)Normalized images of the point source at different radial offsets
reconstructed from the virtual PET ringswith the 8× 8, 12× 12, and 21× 21 arrays. (Right)Measured FWHMand FWTMof the line
profiles along the radial, tangential, and axial directions.

Table 1.Averaged FWHMs and FWTMsover the profiles of the opposing crystal pairs from the intrinsic resolution
measurements (±standard deviation) [mm] and the improvements calculated by equation (4).

8× 8 12× 12 21× 21

FWHM FWTM FWHM FWTM FWHM FWTM

ICS-Net 1.95± 0.17 3.78± 0.18 1.38± 0.07 2.85± 0.18 0.84± 0.08 2.08± 0.25

No recovery 1.99± 0.17 3.91± 0.37 1.45± 0.09 3.23± 0.36 1.07± 0.15 2.53± 0.29

Improvement 20% 26% 31% 47% 62% 60%

Table 2. Improvements of volume FWHMby
applying ICS-Net compared to the case of no
recovery [%].

0 cm 2 cm 4 cm 6 cm

8× 8 11.4 45.9 30.2 20.0

12× 12 33.0 44.8 50.0 39.9

21× 21 63.9 58.8 58.2 46.8
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4.Discussion

The spatial resolutions of various light-sharing PET detector designs were improved, which suggests the
effectiveness of ICS-Net in recovering ICS events at the detector level. Supervisedwith thefirst-interacted rows
and columns, the simple-structured CNN learned the patterns of ICS occurrences utilizing small arrays of
photosensor output.Monte Carlo simulationswere used tomeasure accuracies, error distances, and intrinsic
resolutions, providing evidence for the experimental evaluation of ICS-Net. A relatively small number of
parameters are required for theCNNcompared to fully-connected networks, whichwould be advantageous for
hardware implementation to process events on-the-fly. A complex network structure would not be beneficial to
the accuracy because of the extremely small input size (8× 8) in this application.

The ICS-Net was newly designedwith a focus on the convenience of training dataset acquisition for real
detectors. The benefits of fan-beam irradiation over the pencil-beamwere as follows: (1) the number of
irradiationswas reduced fromN2 to 2N, (2) a largemarginwas allowed for precision in geometrical alignment,
and (3) only 1Dmovement of the detector was required. The detector gantrywas constructed in a square shape
to facilitate switching the irradiating direction between the row and column of the test detector with a single 90-
degree rotation. In PET system construction, the time consumption of the supervising task is not expected to be
significant if one is equippedwith an automated stage and a reference detector containing a thin slab crystal.
Another advantage of the electronic collimation setup is the elimination of the need for a heavymechanical
collimator. The simulation results showed that ICS-Net slightly outperformed ICS-cNet in RMSEDdespite its
lower accuracy by individually estimating the row and column indices of thefirst interaction. As a previous
simulation study demonstrated the resolution improvement of a PET ringwith ICS-cNet (Lee and Lee 2021), we
could predict the effect of applying ICS-Net and support the rationale of conducting the experiments.

For real applications, further considerations in detector engineering would increase the impact of ICS-Net.
The performance of ICS-Net would be further improved if one uses a bright scintillator to the increase signal-to-
noise level of the detector and highly reflective gapmaterials to differentiate the energy deposition patterns (Lee
and Lee 2021). A low level of noise across the pixels is expected to be beneficial because preserving the
scintillation arrival distributions read out by the photosensor arraywould provide accurate inputs to the
network. PhilipsDPCused in this studywas useful to demonstrate the concept in this study, but the detectors
were operated under a constant 10 °C,which is impractical for real implementation. Nevertheless, ICS-Net
would be implementable to various detectors usingmulti-channel photosensors (e.g. analog silicon
photomultiplier (SiPM) arrays andmulti-anode photomultiplier tubes (PMTs)) capable of individual channel
readout. Analog SiPMs are widely used at room temperature without significant disruption by dark noise, while
PMTs feature noise properties independent of temperature.

Alongwith the simulations, the experimental results showed that ICS-Netmitigated spatial blurring for all
detector arrays, regardless of the location in the FOV. The overall impact of ICS-Net was significant for small-
pitch arrays. The intrinsic resolutionmeasurement reflected only the perpendicular irradiation, showing a
relatively small impact of ICS-Net for the 8× 8 array of which the dimension is widely used in clinical PET.
However, the improvements in the volumetric resolution of the 8× 8 array were up to 46% in the ring
alignment, where a large portion of the photonswas obliquely incident. Plus, such ICS recoverywould be
effective for clinical systems in nuclearmedicine using crystalmaterials with low stopping power (Daube-
Witherspoon et al 2009,Moskal et al 2021), mitigating the effect of a large portion of ICS among the photon
interaction (Lee et al 2020). The 21× 21 array showed themost significant improvement by applying ICS-Net,
owing to the largest proportion of ICS among the total events, providing a strongmotivation to apply ICS-Net to
preclinical and organ-dedicated PETwhich require sub-mm spatial resolution.

Thefloodmap-based crystal assignment, whichwas equivalent to the case of no recovery, was highly affected
by the quality of thefloodmap. As shown infigure 4, the peaks appeared indistinct and the events werewidely
scattered across the floodmap of the small-pitch array.While thefloodmaps only encoded the 1D information
of the light distribution by linearly weighting the signal amplitudes to the respective positions of the
photosensors, we hypothesized that ICS-Netwas capable of recognizing the high-dimensional relationship
between the photon interactions and the subsequent photosensor output, resulting in improved performance.
The improved spatial resolution offered by ICS-Net would lead to advances in image contrast and lesion
detectability (Lee et al 2020).

The higher significance of improvement in FWTMresolution than FWHMresolution alignswith previous
studies reporting a high contribution of ICS to FWTM (Schmall et al 2016) and a large impact of ICS recovery on
FWTM (Zhang et al 2019). One plausible explanation for these results is that events with large scatter angles and
ICS of obliquely incident photonswould largely contribute to the peripheral region of the point spread. On the
contrary, ICS events with small scatter angles or perpendicularly incident photons are subject to lower crystal
misidentification probability, therefore the events are likely to be located in the center of the point spread.We
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can expect that ICS recovery can particularly improve the contrast of the image bymitigating the broad tail of the
point spread function.

The degree of improvement in volumetric resolutionwas relatively small for the radial resolutions of the
peripheral regionwhere the parallax errorwas dominant over ICS blurring because of the absence of depth-of-
interaction (DOI)measurement. DOI capability can improve recovery accuracy by providing additional
information on the interaction position (Lee et al 2018). CombiningDOI information and ICS recovery for real
PETdetectors remains as a future study.

The crystal lengthwas 20 mm for all arrays in this study to equalize PE absorption andCompton scattering
occurrences in the same detector dimension.However, the aspect ratio of the crystal element in the small-pitch
arrayswas relatively high (e.g. 1.08:20 for the 21× 21 array) comparedwith that of the practical detectors.
Therefore, an additional investigation of the degree of improvement is required for systemswith different
detector geometries.

5. Conclusion

Our proposed ICS-Net successfully enhanced the spatial resolution of PETby learning the first-interacted rows
and columns. Prior to the experiments, simulations showed the feasibility of ICS-Net for ICS recoverywith high
accuracy, reducedmispositioning distance, and enhanced intrinsic resolution for various light-sharing detector
designs. Comparedwith aCNNwhich required pencil-beams for training dataset acquisitions, the simulations
showed that ICS-Net benefitted in reduced tasks with fan-beam irradiations aswell as effective error distance
reduction. Experimentally trained ICS-Net also improved the intrinsic resolution of the detector pair and spatial
resolution of the prototype PET ring.With a high impact on small-crystal arrays, ICS-Net is expected to
effectively enhance the image quality of high-resolution PET.
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