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Abstract

Objective. One major limiting factor for achieving high resolution of positron emission tomography
(PET) isa Compton scattering of the photon within the crystal, also known as inter-crystal scattering
(ICS). We proposed and evaluated a convolutional neural network (CNN) named ICS-Net to recover
ICS in light-sharing detectors for real implementations preceded by simulations. ICS-Net was
designed to estimate the first-interacted row or column individually from the 8 x 8 photosensor
amplitudes. Approach. We tested 8 x 8,12 x 12,and 21 x 21 Lu,SiOs arrays with pitches of 3.2, 2.1,
and 1.2 mm, respectively. We first performed simulations to measure the accuracies and error
distances, comparing the results to previously studied pencil-beam-based CNN to investigate the
rationality of implementing fan-beam-based ICS-Net. For experimental implementation, the training
dataset was prepared by obtaining coincidences between the targeted row or column of the detector
and a slab crystal on a reference detector. ICS-Net was applied to the detector pair measurements with
moving a point source from the edge to center using automated stage to evaluate their intrinsic
resolutions. We finally assessed the spatial resolution of the PET ring. Main results. The simulation
results showed that ICS-Net improved the accuracy compared with the case without recovery,
reducing the error distance. ICS-Net outperformed a pencil-beam CNN, which provided a rationale
to implement a simplified fan-beam irradiation. With the experimentally trained ICS-Net, the degree
of improvements in intrinsic resolutions were 20%, 31%, and 62% for the 8 x 8,12 x 12,and 21 x 21
arrays, respectively. The impact was also shown in the ring acquisitions, achieving improvements of
11%—-46%, 33%—50%, and 47%—64% (values differed from the radial offset) in volume resolutions of
8 % 8,12 x 12,and 21 x 21 arrays, respectively. Significance. The experimental results demonstrate
that ICS-Net can effectively improve the image quality of high-resolution PET using a small crystal
pitch, requiring a simplified setup for training dataset acquisition.

1. Introduction

The imaging performance of positron emission tomography (PET) relies on the capability of the detector to
measure the time, energy, and position of the interaction of a 511 keV photon originating from the positron
emitter. Precise measurement of the time-of-flight (TOF) enables localization of the source position within the
field of view (FOV), dramatically enhancing the signal-to-noise ratio of the images with TOF reconstruction
(Conti 2011, Surti and Karp 2016). Good energy resolution enables the effective extraction of 511 keV events and
quantitative corrections that utilize energy information (Koral et al 1990, Shao et al 1994). Accurate event
positioning is essential for achieving superior spatial resolution (Surti and Karp 2018). The complicated
relationships between time, energy, and position measurements are optimized with the detector design and
material selection depending on the imaging target of the PET scanner.

© 2023 Institute of Physics and Engineering in Medicine
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Figure 1. Schematics of (a) PE absorption and (b) ICS eventina 12 x 12 crystal array coupled to an 8 x 8 photosensor array occurred
by a perpendicularly irradiated single 511 keV photon. The true deposited energy in the pixelated crystal array and the corresponding
signal amplitude from the photosensor are shown in order. ICS is an event in which a 511 keV photon deposits its energy in multiple
crystals due to Compton scattering. PE: photoelectric, ICS: inter-crystal scattering.

Although significant efforts have been made to develop high-end detector hardware in recent decades,
machine learning (ML) has recently been highlighted as a promising approach (Gong et al 2020, Arabi et al 2021,
Ullah and Levin 2022). ML has been established as a major technique in nuclear medicine imaging to overcome
high noise and enhance the quantification performance (Kim et al 2019, Lee et al 2019, Yie et al 2020, Hwang et al
2021, Kangetal2021). At the detector level, the general role of ML is to extract valuable representations from
minimal sampling capabilities. The timing uncertainty is effectively reduced by estimating the photon arrival
time with ML using the scintillation signals sampled by oscilloscopes or digitizers (Berg and Cherry 2018, Kwon
etal 2021, Onishi et al 2022). Neural networks are popular techniques for 3D positioning of photon interactions
within monolithic crystals; these networks utilize the distributions of light detected by sparsely aligned
photosensors (Muller et al 2019, Peng et al 2019, Sanaat and Zaidi 2020, Gonzalez-Montoro et al 2021).

Inter-crystal scattering (ICS) is one of the major factors limiting the positioning accuracy of detectors of
which the effect also can be mitigated by using ML. Unlike photoelectric (PE) interactions, an ICS event involves
two or more energy depositions via Compton scattering within the scintillator block, resulting in incorrect
positioning of the first interaction (Shao et al 1996, Miyaoka and Lewellen 2000, Gu et al 2010, Ritzer etal 2017,
Hsueral 2019, Teimoorisichani and Goertzen 2019, Zhang et al 2019, Kang et al 2021) (figure 1). ICS is
unavoidable because of the substantial cross-sections of the crystal materials for Compton scattering of 511 keV
photons, which highlights the importance of ICS recovery. Here, the term ‘ICS recovery’ indicates recovering
the sequence of the photon interactions in an ICS event to find the first interaction. The methodologies to
recover ICS have been proposed by a number of groups (Abbaszadeh et al 2018, Yang et al 2018, Ritzer et al 2020)
including ML (Wu et al 2020, Nasiri and Abbaszadeh 2021). Some studies experimentally showed the impact of
ML approach on ICS in real detectors. One good example is support vector machine which showed good
classification ability of the photon interaction types based on the light distributions to reject the ICS events
(Yoshida et al 2007). However, rejecting a significant amount of events would lead to aloss in signal-to-noise of
the system. Another group implemented a pre-trained network on a field-programmable gate array to recover
multiple coincidences caused by Compton scatterings (Michaud et al 2015). Both aforementioned studies
utilized Monte Carlo data for training and then applied the trained model to real detectors or systems, showing
improvements in image quality. However, the appropriateness of preparing supervising data with simulation is
questionable because the performance of ML is expected to be dependent on how effectively the simulations
reflected the reality. The experimental implementation of ML for ICS recovery of light-sharing detectors needs
to be further studied.
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A concept of employing the convolutional neural network (CNN) for recovering ICS events in various
pixelated crystal arrays was proposed in our previous study (Lee and Lee 2021). With extensive simulations, the
impacts of CNN on recovery accuracy and spatial resolution were evaluated. We focused on light-sharing
detectors because ICS accounts for a high portion of the events in these detectors, while identifying the
interactions is challenging compared to 1-to-1 coupled detectors due to the multiplexed signals from the
interacting crystals. The proposed method features event-by-event processing at the detector level and utilizes
the entire ICS events to maintain sensitivity, rather than rejecting them. When fed with a photosensor signal
array, the CNN so-called ICS-cNet estimated the first-interacted crystal, resulting in an improvement in the
spatial resolution of PET comprising highly pixelated detectors. Still, the absence of experimental data remained
alimitation.

Building on prior research, this study extends to demonstrate the performance enhancement of real
detectors with CNN. We trained the network with experimental data to account for the detector characteristics
which substantially differed from the ideal conditions of the Monte Carlo simulations. The original ICS-cNet
required the labeling of every crystal using pencil-beam irradiation to identify the first interaction, which would
be burdensome in reality. Therefore, we modified the network to select the first-interacted row or column of the
crystal array, reducing the number of data acquisitions from N* to 2 N for the N x N crystal array. Prior to
experiments, we conducted simulations to validate the rationale of using this modified network, named ICS-
Net, by comparing its performance with that of previous ICS-cNet. By combining the simulation results and the
findings in the previous study that shows spatial resolution improvements, replacing ICS-cNet with ICS-Net for
the experiments was justified. For the experimental setup, we assembled the detector arrays and acquired
training datasets using a slab crystal to function as a fan beam, irradiating a specific row or column. We then
evaluated the ICS-Net by measuring the intrinsic resolution of the detector pair and the spatial resolution of the
pseudo-PET ring constructed with a detector pair.

2. Materials and methods

2.1. Crystal arrays

We tested three different polished Lu,SiOs (LSO) crystal arrays which differed in pitch and width of the crystal
elements with 20 mm crystallength. The 8 x 8,12 x 12,and 21 X 21 arrays consisted of crystal elements with
widths 0f 3.0, 2.0, and 1.08 mm and pitches 0f 3.2, 2.1, and 1.2 mm, respectively. The side view of a 12 x 12 arrayis
depicted in figure 3 for example. Diffusive reflectors were placed between the crystal elements and the outer crystal
block. The total crystal block size, including the crystals and reflectors, was 25.8 mm x 25.8 mm x 20 mm for all
the crystal arrays. The occurrence rates of ICS are 34%, 39%, and 44% for 8 x 8,12 x 12,and 21 x 21 arrays,
respectively (Lee and Lee 2021).

2.2.1CS-Net

2.2.1. Input and structure

The proposed ICS-Net uses an 8 x 8 array of signal amplitudes measured by the photosensor as input to predict
the row or column index of the first-interacted crystal (figure 2(a)). Here, the input is the number of optical
photons detected by 8 x 8 photosensitive areas normalized with the maximum amplitude. The selected 511 keV
photopeak events contain both PE and ICS, undistinguished. The network consists of two convolutional layers
and a fully-connected layer at the end to choose one of the Nrows or columns.

2.2.2. Network training
ICS-Net-R (row) and ICS-Net-C (column) were individually trained with the same hyperparameters. Adam
optimizer and cross-entropy loss were used for the network training. The learning rate was initially set as 0.001
and it was dropped by a factor of 0.1 every epoch. The number of channels for two layers (C;, C,) was optimized
as (60, 180), (60, 240), and (70, 350) for the 8 x 8,12 x 12,and 21 x 21 arrays, respectively, while the number of
epochs was 20 for all arrays. In an ideal symmetric case (e.g. simulation), ICS-Net-R (row) and ICS-Net-C
(column) can share one network, whereas experimental studies require individual training of ICS-Net-R and
ICS-Net-C for several factors. As shown in figure 2(b), both loss function and accuracy converged well, which
implies that the network shows good stability.

ICS-Net is a modified version of ICS-cNet designed and tested in a previous study (Lee and Lee 2021). ICS-
cNet directly selects the first interaction among the N* crystals. Therefore, the output vector size was N* x 1, and
the overall structure was identical to that of the ICS-Net.




10P Publishing

Phys. Med. Biol. 68 (2023) 095017

SLeeand] SLee

(a) I|I'I|1)I..It ‘
8x8 ||| L / ICS-Net-R
Signal First-interacted crystal
readout \ /'
ICS-Net-C
N x1
e Q| Output
. 8x8xC, ‘4x4xc,. 4x4xC, ‘ ® Row (R) or column (C)
/ | index
i O
Convolution .
- Filtersize=3x 3 Batch normalization Maxg?tolm'g — Fully connected
- Padding =1 + Relu i + Softmax
ide = - Stride=2
- Stride=2
(b) 25 ; : ; 100
A
- i W o
w
< )
& £
Q1.5 Training loss 160
g 1 (o] Val:d:alion loss oy
< q Training accuracy s
3 1 A Validation accuracy | | 40 a
a 3]
2] <
©os k% 1
SNBSS DN D D GA BBt
Q » : 0
0 5 10 15 20

Epoch

Figure 2. Structure and training of ICS-Net. (a) Schematic of applying ICS-Net for ICS recovery using the 8 x 8 signal array. The first-
interacted row and column were individually determined with the respective network. The structure of the ICS-Net-R (row) or ICS-
Net-C (column) is shown below. C; and C, denote the optimized number of channels. (b) Loss and accuracy as function of epochs
during the training (example of ICS-Net-R for 8 x 8 array simulation).

2.3.Simulation
2.3.1. GATE setup
We first investigated the feasibility of ICS-Net using GATE v8.2 Monte Carlo and UNIFIED optical simulation

(Levin and Moisan 1996, Jan et al 2004). The density, refractive index, and light yield of the LSO were 7.4 g cm >,
1.82,and 26 000 MeV ™' respectively. The photosensor consisted of an 8 x 8 array of 3 mm x 3 mm

photosensitive areas in a 3.2 mm pitch. A 25.8 mm X 25.8 mm x 1.5 mm epoxy light guide was placed to diffuse

the scintillation photons from the crystal elements to the photosensor. The intrinsic uncertainty of optical
photon emission of LSO material was 9% in FWHM at 511 keV. The surfaces of the crystals and light guide were
polished (o, = 0.1°), 5 sides wrapped by a diffusive reflector with 98% reflectivity. We used Hits output of GATE
to analyze every photon interaction and manually applied an energy threshold of 400 keV. To generate training
and test datasets, the entire array was uniformly and perpendicularly irradiated by 511 keV photons from the top
side. The number of events per row or column was about 20 000 x Nin total for the N x Narray. 75%, 10%, and

15% of the datasets were used for training, validation, and testing, respectively. Photoelectricand Compton
processes were enabled for 511 keV photon interaction using the standard model, while Scintillation,
OpticalAbsorption, and OpticalBoundary were enabled for optical photon generation and tracking.

2.3.2. Evaluation of simulated data

By applying the trained ICS-Net to the test dataset as described in section 2.2, we measured the accuracies for
selecting the first-interacted crystals for each ICS, PE, and total (ICS + PE) event. We also measured the error
distance between the centers of the true first-interacted crystal and the network output and calculated the 2D
root mean square error distance (RMSED) for the total events as follows:
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Figure 3. Experimental setup for evaluation of ICS-Net. (a) Training dataset acquisition, (b) intrinsic resolution measurement, and (c)
spatial resolution measurement (also shown with the photograph (d)).

N
RMSED = \/%Z ((xpred,n - xtrue,n)2 + (ypred,n - )’true’n)z) > (D
n=1

where (x, y)indicates 2D position of the true or predicted (with or without ICS-Net) crystal for the n th event,
and N indicates the total number of the test events.

Another metric, the relative RMSED reduction (RMSED.4), was calculated to evaluate the impact of ICS-
Net relative to the crystal pitch because the pitch intrinsically determines the spatial resolution (the value with
the notation No recov is later explained in section 2.5):

RMSEDNO recov [mm] - RI\/ISEI)IC57Net [mm]

RMSED;q =
¢ Crystal pitch [mm]

)

These measurements were compared with those of ICS-cNet presented in a previous study (Lee and Lee 2021)
using the identical datasets.

2.4. Experiment

2.4.1. Training dataset acquisition

The test detectors were assembled using an LSO array (Meishan Boya Advanced Materials, China), a

32 mm x 32 mm X 2 mm acrylic light guide, and a digital photon counter (DPC; DPC-3200—22—44; Philips,
USA). A reference detector was also assembled by coupling a 0.75 mm LSO slab crystal to another DPC. The

number of scintillation photons detected by the 8 x 8 DPC pixels was individually read out using the Philips

Technical Evaluation Kit with a full-tile neighbor logic enabled (Schulze 2013).

The training and test datasets were acquired using electronic collimation, as shown in figure 3(a). To
irradiate the known first-interacted single row or column of the test crystal array, we acquired coincidence data
between the test and reference detectors with a **Na point source placed between the target row or column and
the slab crystal. The distance from the point source to the test and reference crystals were 42 mm and 67 mm,
respectively. The effective beam width entering the top of the test detector was then calculated to be 0.47 mm
using the ratio of similitude. The reference detector and point source were mounted on a 1D motorized stage to
automatically irradiate each row or column in a step size equal to the crystal pitch. An energy window of 511 keV/
+ FWHM/2 was applied to the dataset, where FWHM indicates the global energy resolution of the test detector
in full-width at half-maximum (19%, 23%, and 31% for 8 x 8,12 x 12,and 21 x 21, respectively).
Approximately 80 000 coincidence events were acquired after energy windowing for every row or column. To
enlarge the dataset and prevent overfitting, a 2-fold augmentation for ICS-Net-R was performed by flipping the
dataset row-wise and assigning them to the same first-interacted row. The same procedure was repeated for ICS-
Net-C.
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The acquired events were used to train (80%), validation (10%) and test (10%) ICS-Net-R and ICS-Net-C of
each crystal array to counter the asymmetric geometry of the DPC channel areas. The networks were trained and
applied individually for each detector to counter the differences in the DPC characteristics such as gain and dark
count rate. The entire experiment was conducted in a temperature-controlled box at 10 °C.

2.4.2. Intrinsic resolution measurement
To evaluate the impact of the ICS-Net on the detector level, we measured the intrinsic resolution using the setup
shown in figure 3(b). A 1D motorized stage was placed at the middle of the facing detector pair to move a **Na
point source from one edge to the center. The moving step sizes were 0.5, 0.35, and 0.2 mm for 8 x 8,12 x 12,
and 21 X 21 test detectors, respectively. The trained ICS-Net-R and ICS-Net-C models were applied to the
acquired events to determine the first-interacted crystals. The FWHM:s and full-width at tenth-maxima
(FWTMs) of the count profiles acquired by the opposing crystal pairs were measured and averaged for each test
detector pair.

The degree of improvement in the intrinsic resolution was compared. The intrinsic resolution (Rjn) was
modelled as follows:

Rintr = \/Rjet + erange + R12800 + lelur > (3)

where Ryet, Rranges Risoo» and Ry, are the resolution determined by crystal pitch, positron range, nonlinearity of
annihilation photon emissions, and blurring factors including ICS, crystal misidentification, and crystal
penetration (Rahmim et al 2013). We expect to reduce Ry, by applying ICS-Net in this study. The Ry,
improvement was calculated as follows:

2 2
\/Rintr,No recov Rintr,ICS—Net

Rinimprovement [%] = x 100. 4)

Rintr,No recov

Because the numerator of the right-hand side is equal to \/ Rilur. No recov — Rijur,1cs—Net » the metric Ry
improvement indicates the reduction of ICS blurring relative to the resolution without ICS recovery.

2.4.3. Spatial resolution measurement

A pair of detectors as mounted on a 2-axis rotational stage to construct a virtual PET ring prototype (figures 3(c),
(d)). The outer axis rotated one detector whereas the other detector was fixed to imitate the relative placement of
the two detectors. The inner axis rotated the imaging target to imitate the relationship between the target and
detector pair. Data were acquired for every pair of outer- and inner-axis placements. The virtual ring consisted of
18 transaxial detectors and one axial detector; thus, the crystal face-to-face distance and axial length of the ring
were 170 mm and 25.8 mm, respectively.

The spatial resolution of the prototype ring was measured using a 3.9 ;Ci **Na point source with a 0.25 mm
radius encapsulated in a 10 mm plastic cube. The radial offsets of the point source were 0, 2, 4, and 6 cm. Data
were acquired for 3 min for each detector placement pair. Image reconstruction was based on 3D ordered-subset
expectation maximization with 1 iteration and 18 subsets. Because the point source size was negligible compared
to the image voxel and the attenuation due to the embedding cube was negligible, we did not apply image
corrections such as normalization and attenuation corrections for the spatial resolution measurement. Finally,
the volumetric resolution (FWHM,,,|) and its improvement were calculated as follows:

FWHM, [mm?] = FWHM,,4[mm] X FWHM, [mm] X FWHM,y[mm] (5)

FWHM yo1,No recovery = FWHMyol 165 - Net

x 100% 6
FWHMVOLNO recovery i ( )

FWHM,,, improvement[%] =

where FWHM, 4, FWHM,,,,, and FWHM,; denote the radial, tangential, and axial resolutions, respectively, in
the FWHM.

2.5. Comparison with the case of no recovery applied

Throughout the simulations and experiments, the results of ICS-Net were compared with a practical flood map-
based crystal assignment, which corresponded to the case without ICS recovery. For each detector, the 2D flood
map was generated by weighting the 8 x 8 output amplitudes to the respective positions of the photosensor
(DPC) pixels, and integrating the events over the entire irradiations in training data acquisition. Examples of the
flood maps are presented in figure 4. A Voronoi diagram was drawn based on the crystal peaks on the map, and
the segments were indexed sequentially. Most of the PE absorptions were populated on the peak, while ICS
appeared between the peaks owing to energy depositions in multiple crystals. Once generated, the flood map was
used as a template to assign the crystal index for every upcoming event.

6
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Figure 4. Flood maps of 8 x 8,12 x 12,and 21 x 21 detectors obtained from simulation (upper) and experiment (lower), which are
practically used for event positioning without ICS recovery.

3. Results

3.1. Simulation

3.1.1. Detector-level evaluation

ICS-Net yielded approximately two times higher accuracy in selecting the first-interacted crystals of the ICS
events compared to the case of no recovery applied, whereas the crystals of PE events were almost 100% correctly
selected for all configurations (figure 5(a)). Concerning the total events, ICS + PE, ICS-Net yielded accuracy
increments of 10% for all crystal arrays, whereas ICS accounted for 34%, 39%), and 43% of the total events for the
8 % 8,12 x 12,and 21 x 21 arrays, respectively (Lee and Lee 2021). The accuracy was relatively low for the highly
light-shared array because the photosensor response was insensitive to the difference in the interaction schemes,
making it challenging for the network to learn the pattern accurately. The closely located crystals on the
simulated flood map of the 21 x 21 array shown in figure 4 support this explanation.

Owing to its high accuracy in finding the first interaction, ICS-Net reduced the RMSED of crystal
positioning, implying a reduction in spatial blurring compared with the case without recovery for all arrays
(figure 5(b)). A considerable impact of ICS-Net on the small-pitch array can be expected with a high RMSED, 4
which was defined in equation (2).

Compared with ICS-cNet from a previous study, ICS-Net exhibited lower accuracy in determining the
exact indices of the first-interacted crystals. In contrast, ICS-Net showed smaller RMSED and higher
RMSED,,; than ICS-cNet, indicating better improvements in spatial resolution. In figure 6, the normalized
cumulative density functions (CDFs) of the error distance between the true and assigned crystals saturated
into 1 more rapidly for ICS-Net than ICS-cNet. The results imply that the crystals were assigned closer to the
true first-interacted crystals for false events with ICS-Net despite its small degradation in accuracy
(corresponding to the probability at error distance = 0 mm). We assume that individual prediction of rows
and columns in ICS-Net served as a double sampling of the signal output, which utilizes twice as much
information as ICS-cNet. Additionally, the probability of overfitting is expected to be lowered because
ICS-Net can encode first-interacted row (column) output from various first-interacted column (row),
consequently requiring fewer output labels than ICS-cNet.

3.2. Experiment

3.2.1. Training dataset acquisition

Figure 7 shows examples of irradiating a single row of test detectors for labeling. For every acquisition, we
confirmed the geometrical alignment of the setup by generating a flood map. The bold peaks in the line indicate

7
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Figure 6. Normalized CDFs of error distance from the true first-interacted crystal by applying ICS-cNet, ICS-Net, and without
recovery to (a) 8 x 8,(b) 12 x 12,and (c) 21 x 21 detectors.

the irradiated crystals in the labeled row. The peaks in the adjacent rows also appeared, more significantly for the
smaller-pitch array. Wrong irradiation owing to the limitation in the precision of the detector alignment would
have contributed to these peaks along with ICS events sharing the energy largely with the adjacent rows.

3.2.2. Intrinsic resolution

ICS-Net exhibited shaper count profiles with higher profile intensities than the case of no recovery (figure 8),
indicating the decrease in count leakage into other crystal pairs due to mispositioning. Consequently, reductions
in the FWHM and FWTM were observed by applying ICS-Net (table 1). The Rj,, improvement due to ICS
recovery was higher for the smaller-pitch array, which was in good agreement with the findings in the
simulation. ICS-Net effectively alleviated ICS blurring for small-pitch arrays, where the ICS accounted for a
large proportion of the photon interaction types. In addition, the practical flood map-based assignment for the

21 x 21 array was degraded with poor flood map quality of which the crystals were hardly resolved as shown in
figure 4.

3.2.3. Spatial resolution
The reconstructed images and measured FWHM and FWTM values of the **Na point source acquisitions for
various radial offsets are shown in figure 9. A reduction in the tangential blurring was well observed, particularly
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Radial offset [em]

Radial offset [cm]

Radial offset [cm]

—©—FWHM ICS-Net —8—FWHM No recovery
= B =FWTM ICS-Net = 8 —FWTM No recovery

Table 1. Averaged FWHMSs and FWTM:s over the profiles of the opposing crystal pairs from the intrinsic resolution
measurements (+standard deviation) [mm] and the improvements calculated by equation (4).

8x8 12 x 12 21 x21
FWHM FWTM FWHM FWTM FWHM FWTM
ICS-Net 1.95£0.17 3.784+0.18 1.38 £0.07 2.851+0.18 0.84+0.08 2.08+0.25
No recovery 1.99 £0.17 3.9140.37 1.45+0.09 3.234+0.36 1.07£0.15 2.534+0.29
Improvement 20% 26% 31% 47% 62% 60%

Table 2. Improvements of volume FWHM by

applying ICS-Net compared to the case of no

recovery [%].

0cm 2 cm 4 cm 6 cm
8x8 11.4 45.9 30.2 20.0
12 x 12 33.0 44.8 50.0 39.9
21 x 21 63.9 58.8 58.2 46.8

for the small-pitch array. A similar effect was found for axial blurring but not shown in this paper. As the radial
offset increased, the parallax error resulted in a wide point spread along the radial axis as the offset from the

center increased, thus minimizing the impact of ICS recovery on the radial resolutions. However, ICS-Net

achieved enhancements in the spatial resolution for almost all detector designs and radial offsets. As expected
from the simulation and intrinsic resolution results in the previous sections, the 21 x 21 array showed the largest
degree of enhancement compared to the case of no recovery. The volume FWHM improvements defined in
equation (6) were significant for the small-pitch arrays in the overall FOV (table 2).
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4. Discussion

The spatial resolutions of various light-sharing PET detector designs were improved, which suggests the
effectiveness of ICS-Net in recovering ICS events at the detector level. Supervised with the first-interacted rows
and columns, the simple-structured CNN learned the patterns of ICS occurrences utilizing small arrays of
photosensor output. Monte Carlo simulations were used to measure accuracies, error distances, and intrinsic
resolutions, providing evidence for the experimental evaluation of ICS-Net. A relatively small number of
parameters are required for the CNN compared to fully-connected networks, which would be advantageous for
hardware implementation to process events on-the-fly. A complex network structure would not be beneficial to
the accuracy because of the extremely small input size (8 x 8) in this application.

The ICS-Net was newly designed with a focus on the convenience of training dataset acquisition for real
detectors. The benefits of fan-beam irradiation over the pencil-beam were as follows: (1) the number of
irradiations was reduced from N*to 2 N, (2) a large margin was allowed for precision in geometrical alignment,
and (3) only 1D movement of the detector was required. The detector gantry was constructed in a square shape
to facilitate switching the irradiating direction between the row and column of the test detector with a single 90-
degree rotation. In PET system construction, the time consumption of the supervising task is not expected to be
significant if one is equipped with an automated stage and a reference detector containing a thin slab crystal.
Another advantage of the electronic collimation setup is the elimination of the need for a heavy mechanical
collimator. The simulation results showed that ICS-Net slightly outperformed ICS-cNet in RMSED despite its
lower accuracy by individually estimating the row and column indices of the first interaction. As a previous
simulation study demonstrated the resolution improvement of a PET ring with ICS-cNet (Lee and Lee 2021), we
could predict the effect of applying ICS-Net and support the rationale of conducting the experiments.

For real applications, further considerations in detector engineering would increase the impact of ICS-Net.
The performance of ICS-Net would be further improved if one uses a bright scintillator to the increase signal-to-
noise level of the detector and highly reflective gap materials to differentiate the energy deposition patterns (Lee
and Lee 2021). Alow level of noise across the pixels is expected to be beneficial because preserving the
scintillation arrival distributions read out by the photosensor array would provide accurate inputs to the
network. Philips DPC used in this study was useful to demonstrate the concept in this study, but the detectors
were operated under a constant 10 °C, which is impractical for real implementation. Nevertheless, ICS-Net
would be implementable to various detectors using multi-channel photosensors (e.g. analog silicon
photomultiplier (SiPM) arrays and multi-anode photomultiplier tubes (PMTs)) capable of individual channel
readout. Analog SiPMs are widely used at room temperature without significant disruption by dark noise, while
PMTs feature noise properties independent of temperature.

Along with the simulations, the experimental results showed that ICS-Net mitigated spatial blurring for all
detector arrays, regardless of the location in the FOV. The overall impact of ICS-Net was significant for small-
pitch arrays. The intrinsic resolution measurement reflected only the perpendicular irradiation, showing a
relatively small impact of ICS-Net for the 8 x 8 array of which the dimension is widely used in clinical PET.
However, the improvements in the volumetric resolution of the 8 x 8 array were up to 46% in the ring
alignment, where a large portion of the photons was obliquely incident. Plus, such ICS recovery would be
effective for clinical systems in nuclear medicine using crystal materials with low stopping power (Daube-
Witherspoon et al 2009, Moskal et al 2021), mitigating the effect of a large portion of ICS among the photon
interaction (Lee et al 2020). The 21 x 21 array showed the most significant improvement by applying ICS-Net,
owing to the largest proportion of ICS among the total events, providing a strong motivation to apply ICS-Net to
preclinical and organ-dedicated PET which require sub-mm spatial resolution.

The flood map-based crystal assignment, which was equivalent to the case of no recovery, was highly affected
by the quality of the flood map. As shown in figure 4, the peaks appeared indistinct and the events were widely
scattered across the flood map of the small-pitch array. While the flood maps only encoded the 1D information
of the light distribution by linearly weighting the signal amplitudes to the respective positions of the
photosensors, we hypothesized that ICS-Net was capable of recognizing the high-dimensional relationship
between the photon interactions and the subsequent photosensor output, resulting in improved performance.
The improved spatial resolution offered by ICS-Net would lead to advances in image contrast and lesion
detectability (Lee et al 2020).

The higher significance of improvement in FWTM resolution than FWHM resolution aligns with previous
studies reporting a high contribution of ICS to FWTM (Schmall et al 2016) and a large impact of ICS recovery on
FWTM (Zhang et al 2019). One plausible explanation for these results is that events with large scatter angles and
ICS of obliquely incident photons would largely contribute to the peripheral region of the point spread. On the
contrary, ICS events with small scatter angles or perpendicularly incident photons are subject to lower crystal
misidentification probability, therefore the events are likely to be located in the center of the point spread. We
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can expect that ICS recovery can particularly improve the contrast of the image by mitigating the broad tail of the
point spread function.

The degree of improvement in volumetric resolution was relatively small for the radial resolutions of the
peripheral region where the parallax error was dominant over ICS blurring because of the absence of depth-of-
interaction (DOI) measurement. DOI capability can improve recovery accuracy by providing additional
information on the interaction position (Lee et al 2018). Combining DOI information and ICS recovery for real
PET detectors remains as a future study.

The crystal length was 20 mm for all arrays in this study to equalize PE absorption and Compton scattering
occurrences in the same detector dimension. However, the aspect ratio of the crystal element in the small-pitch
arrays was relatively high (e.g. 1.08:20 for the 21 x 21 array) compared with that of the practical detectors.
Therefore, an additional investigation of the degree of improvement is required for systems with different
detector geometries.

5. Conclusion

Our proposed ICS-Net successfully enhanced the spatial resolution of PET by learning the first-interacted rows
and columns. Prior to the experiments, simulations showed the feasibility of ICS-Net for ICS recovery with high
accuracy, reduced mispositioning distance, and enhanced intrinsic resolution for various light-sharing detector
designs. Compared with a CNN which required pencil-beams for training dataset acquisitions, the simulations
showed that ICS-Net benefitted in reduced tasks with fan-beam irradiations as well as effective error distance
reduction. Experimentally trained ICS-Net also improved the intrinsic resolution of the detector pair and spatial
resolution of the prototype PET ring. With a high impact on small-crystal arrays, ICS-Net is expected to
effectively enhance the image quality of high-resolution PET.
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