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Abstract
Objective. Identifying the inter-crystal scatter (ICS) events and recovering the first interaction position
enables the accurate determination of the line-of-response in positron emission tomography (PET).
However, conventional silicon photomultiplier (SiPM) signalmultiplexingmethods based on two-
dimensional (2D) charge-division circuits do not allow the detection ofmultiple gamma-ray
interaction positions in a scintillation array coupledwith a SiPMarray. In this study, we propose a
novelmultiplexingmethod that can restore all the individual channel data from a smaller number of
multiplexed channels using high-pass filters and neural networks.Approach.The number of output
channels is reduced by summing the SiPM signals that have passed through high-pass filters with
different time constants. Then, the signal amplitude of each SiPMchannel is restored from the
combined signal using an artificial neural network. This study explains the principle of thismethod in
detail and demonstrates the results using 4:1multiplexing as an example. The usefulness of this
methodwas also demonstrated by its application in the identification of ICS events in 1-to-1 coupled
LSO-SiPMPETdetectors.Main results.The artificial neural network enabled accurate energy
estimation for each SiPMchannel. One of the high-passfilter sets with the lowest Cramér–Rao lower
bound provided the best results, yieldingR2 value of 0.99 between the true and estimated signals. The
energy andflood histograms generated using the best-estimated signals were in good agreementwith
the ground truth. Additionally, the proposedmethod accurately estimated 2D energy deposit
distribution in the LSO crystal array, allowing ICS event identification. Significance.The proposed
method is potentially useful for ICS event recoverywith a reduced number of array signal readout
channels from a SiPMarray.

1. Introduction

Positron emission tomography (PET) is a functional andmolecular imaging technique that employs the
detection of two 511 keV gamma-rays produced through themutual annihilation of positrons emitted by a
radiotracer. Radiation detectors used in PET systems consist of scintillation crystals and photosensors. The
scintillation crystal converts high-energy gamma-rays into low-energy scintillation photons, and the
photosensors detect low-energy photons and convert them into electrical signals. Silicon photomultiplier
(SiPM) is a widely used photosensor in PET systems. The size of SiPMs ranges from1× 1 to 4× 4 mm.The high
granularity and reduced scintillation photon loss due to the compact size of the SiPMcontributed to the
improved spatial and energy resolution of the PET detectors.

However, the increased number of output channels in the photosensor array is a disadvantage caused by the
compact size and high granularity of SiPM. Therefore, various signalmultiplexingmethods have been proposed
to efficiently read and record signals from the SiPMarrays by reducing the number of output channels, while
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preserving the time, energy, and position information for gamma-ray detection (Park et al 2022).Most
multiplexingmethods used in SiPMPETdetectors are based on two-dimensional (2D) charge division circuits,
such as Anger logic and discretized positioning circuits (Yamamoto et al 2011,Downie et al 2013, Goertzen et al
2013, Ko et al 2013,Olcott et al 2013,Won et al 2016, Park et al 2017). Usually, thesemethods obtain the x and y
coordinates of the gamma-ray interaction based on the ratio of the two readouts in each direction. Therefore,
only four readouts (x+, x−, y+, and y−) are required to specify where the gamma-rays are absorbed, thereby
substantially reducing the number of readout channels (e.g. 16:1, 36:1, or greater). Additionally, by utilizing
charge-division-based signalmultiplexingmethods, we can achieve a higher intrinsic spatial resolution for PET
detectors compared to that of the pitch of the SiPMelement (e.g. Ko et al 2016).

On the other hand, these charge division-based signalmultiplexingmethods have a critical disadvantage that
only a single gamma-ray interaction position can be estimated from the dataset obtainedwith a single event
trigger. Therefore, using thesemethods, it is a challenge to distinguish inter-crystal scatter (ICS) events, where
gamma-rays partially lose energy throughCompton scatterings before being absorbed by photo-electric
absorption in neighboring crystal, frompure photo-electric absorption or intra-crystal scatter events, where
gamma-rays lose all their energy in a crystal element. The ICS events results in a degradation of the spatial
resolution and image contrast of PET imaging system.Utilizing larger scintillation crystal elements reduces the
ICS events, however, itmay result in degradation of PET spatial resolution. Identifying ICS events and
recovering thefirst interaction position allows for the accurate determination of the line-of-response (LOR),
which is the straight line connecting two opposite gamma-ray interaction positions and providing information
on the location of radiotracer in the body. There are several studies using time-over-threshold (ToT)method to
achieveCompton scattering detection (Sharma et al 2020, Park and Lee 2020, Shimazoe et al 2020, Kim et al
2022,Uenomachi et al 2022). J-PETuses plastic scintillators which have low density and stopping power,
resulting in a high level of scatter occurring within the scintillator. Therefore, it is important tomeasure the
energy to determinewhether a signal is a photoelectric or Compton scattering event (Sharma et al 2020). Because

Figure 1. (a)The proposedmultiplexingmethod uses high-passfilters, which allow the decoding of the energy information of each
input channel from a smaller number ofmultiplexed channels, and (b) the circuit diagramdesigned to validate the proposedmethod.
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Compton imaging is based on events inwhichCompton scattering occurs, accurate estimation of the position
and energy of Compton scattering is required (Shimazoe et al 2020, Kim et al 2022,Uenomachi et al 2022).
Improved versions of ToT, such as dynamic ToT (Shimazoe et al 2020, Kim et al 2022) and PETNET
(Uenomachi et al 2022), were used to determine the scattered energymore accurately. Amultiplexingmethod
using delay-chained ToTpulses has been proposed (Park et al 2020) for ICS event detection. However, the ToT
requires asmany comparators and/or FPGA I/Opins as the number of SiPM channels.

The row-and-column summethod (Popov et al 2006, Kwon and Lee, 2014, Stolin et al 2014) can identify ICS
events because it can estimate the positions of two ormore interactions from a datasetmeasured along the
directions of row and column.However, the row-and-column summethod requiresmore readout channels
than 2D charge division circuits (2N versus 4) forN×N SiPMarrays.

Here, we propose a novelmultiplexingmethod using high-passfilters that allows the decoding of the energy
information of each input channel from a smaller number ofmultiplexed channels (figure 1). In the proposed
method, the number of output channels is reduced by summing the SiPM signals that have passed through
passive first-order high-passfilters with different time constants (or cutoff frequencies). To restore the energy
information of each SiPM,we evaluated two decodingmethods (pseudo-inverse and artificial neural networks).
As a proof of concept, we demonstrated 4:1multiplexing as an example. Additionally, we applied the proposed
method to ICS event identification using a PETdetector with 4× 4 and 8× 8 array-type SiPMs.

2.Materials andmethods

2.1.Multiplexingmethod
The scintillation crystals and SiPMdevices used in PETdetectors have slightly different characteristics, and the
delay and dispersion of the electrical signals differ depending on the SiPMposition. Therefore, the detector
response determined by the pulse shape difference is position-dependent. However, the position dependence of
the detector response is not sufficiently large to estimate the gamma-ray interaction position using only the
position-dependent detector response (shape of the signals readout by SiPM) and conventional pulse-shape
analysismethods.

Figure 2. (a)Combination of the four channels in each SiPMarray and (b) the experimental setup.
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Themain idea of the proposedmethod is tomodify the detector response by applying an electrical filter to
the SiPM signal such that the filtered signals can be distinguished from each other based on their pulse shape.
The contributions to the summed (multiplexed) signal by each SiPMcan be estimated if the filtered signal is
uncorrelated or the correlation is sufficiently small. Here, the ‘contribution’ is proportional to the energy of
gamma-rays deposited on the corresponding scintillation crystal.

In this study, tominimize circuit complexity and dead time, passivefirst-order high-passfilters with
different resistor and capacitor valueswere applied. The detector response, determined by several factors,
including sensor characteristics, high-pass filter, and circuit routing, wasfirstmeasured by uniformly irradiating
the detector blockwith a 511 keV source. The output signal of amultiplexer consisting of high-passfilters and
summing amplifiers was thenmodeled as a linear combination of the normalized detector responses and
deposited energy (more precisely, theweights applied to the normalized detector response), as shown infigure 1
and equation (1).

The demultiplexing process is equivalent to solving the inverse problem to estimate the deposited energy
information from a digitally sampledmultiplexer output, given a normalized detector response. Among the
several approaches to solving the linear inverse problem,we chose the pseudo-inversemethod and artificial
neural networks because of their simplicity in designing and implementing the data collection chain.

2.2. Experimental setup
Figure 1(b) shows a circuit diagramdesigned to validate the proposedmethod. To investigate whether signal
bufferingwas necessary, the high-passfiltered SiPM signals were summed either before or after buffering using
summing amplifiers. The summed signal was digitized using awaveform sampler with a sufficiently high
sampling rate andwide bandwidth so that no signal shape informationwas lost.

The three detectormodules tested in this study employed a 4× 4 array-type SiPM (S14160-3050HS-04;
HPK, Japan) or 8× 8 array-type SiPM (S14160-3050HS-08;HPK, Japan), which have the same SiPMelement
size and pitch (3.0 and 3.12 mm). The 4× 4 and 8× 8 SiPMswere 1-to-1 coupledwith 4× 4 and 8× 8 LSO
crystal arrays, respectively. The size of a crystal elementwas 3.0× 3.0× 15mm3 and the pitch length between the
crystal elements was 3.12 mm.Additionally, light-shared detectors weremade using an 8× 8 SiPMcoupledwith
a 12× 12 LSO crystal array (crystal element size= 2.0× 2.0× 20mm3). The crystal elements were optically
isolated using the ESR reflectors. Four different high-passfilters were applied to the signals from the four SiPM
channels of the 4× 4 SiPMand each of the four row/column summed channels of the 8× 8 SiPM, as shown in
figure 2(a). Thefiltered signals were combined using the summing amplifiers (AD8000; AnalogDevices, US)
before and after passing through the buffers. The summed signals and four ground truth signals (high-pass
filtered signals before summation)were sampled using a 1 GHz digitizer (DT5742B; CAEN, Italy). The number
of samples for each eventwas 1024, which yielded approximately 1μs long sampled signals.

Using the best set of high-passfilters determined by themethods described in section 2.4, fourmultiplexing
circuits with high-passfilters, buffers, and a summing amplifier were applied to the 4× 4 and 8× 8 SiPMs.
Therefore, a total of four summing signals and 16 ground-truth signals weremeasured, as shown infigure 2(b).
For gamma-ray irradiation, a point source of 224.59 kBq (6.07μCi) 22Nawas used. Furthermore, for
coincidencemeasurement, a reference detector consisting of a 4× 4× 10mm3 LYSO crystal and a single-
channel fast PMT (R9800;HPK, Japan) (Lee et al 2011)was used. All the experiments were performed at 20 °C
inside a thermostatic chamber, and the over-voltage of SiPMswere set at 2.3 V in all the experiments.

2.3. Energy estimation algorithms
2.3.1.Mathematical modeling
The following assumptionsweremade to simplify themathematicalmodeling and devisemethods for
estimating the energy deposited in each crystal by gamma-ray incidence.

1. The shape of the output pulse, hereafter referred to as the normalized detector response, was determined by
several factors including the decay time of the scintillation crystal and the time constant of the filter, which
does not vary according to the deposited energy. Additionally, the pulse amplitudewas determined from the
deposited energy.

2. The noise characteristics of front-end electronics follow a normal distribution (additive and white Gaussian)
and are not affected by the shape or amplitude of the pulses.

3. Themultiplexed electric signals are recorded using awaveform sampler.

Based on the assumptions above, anymultiplexing circuit can bemodeled as a linear systemusing the
following equation (Lee et al 2018):
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( )y Ax n, 1= +

xäRm, xi� 0∀iä {1Km}: individual energy transferred to each crystal fromgamma-rays.m is the number of
sensors (SiPMs coupled to the crystal).

yäRs:multiplexed (summed) signal acquired usingwaveform sampler. s is the number of waveform
samples (e.g. 1024).

AäRs×m: amatrix defined by themultiplexing circuit. Each column vector was determined using the
normalized detector response.

näRs, n∼N(0,σ2Is): zero-mean additive white Gaussian noise (AWGN)
In this study, to obtain a noise-robustmultiplexing technique, thematrixA and the estimation algorithm

were optimized. First, we chose a set of time constants forfilters that yielded a low variance in the energy
estimation, as described in section 2.4. Then, to solve the inverse problemdetermined by a set offilters, we
applied two different individual deposit energy estimationmethods: (1) pseudo-inverse and (2) artificial neural
networks.

2.3.2. Pseudo inversemethod
Because AWGNwas assumed, themaximum-likelihood solution of equation (1) can be directly calculated using
the pseudo-inverse of the detector responsematrixA as follows (Lee et al 2018):

ˆ ( ) ( )A A A yx . 2T 1 T= -

2.3.3. Artificial neural network
Wecan easily estimate the energy using a pseudo-inversematrix calculation; however, thismethod does not
allow the imposition of constraints on the solution (e.g. non-negativity of x) to obtain an accurate answer.
Although a convex-constrained optimizationmethodwas proposed to solve the demultiplexing problem, it
requires iterative estimation of the solution x.Moreover, it has not succeeded in demultiplexing the signals
multiplexed by 2D charge division circuits (Lee et al 2018). Therefore, in this study, we developed an artificial
neural network-based energy estimationmethod that provides a solution through a single feedforward
operation once it is trained.

Amulti-layer perceptronwas trained to infer the energy of the filtered signals (O× 1,O: number offiltered
signals= number of network output nodes) from the sampledmultiplexed signal input (S× 1, S: number of
samples=number of network input nodes). The network had two hidden layers, and the number of nodes in
the hidden layer was 256.We used the ReLU activation function and did not employ normalization or dropout.
In our experimental setup, the network inputwas a 1024× 1 vector of the summed signal, and the outputwas a
4× 1 vector of the filtered signal energy. Approximately 40 000 events per filter combinationwere used as
datasets, whichwere split into training, validation, and test sets at a ratio of 5:1:4.

2.4.Optimization of high passfilters
Todetermine the best combination of high-passfilters, wemeasured the detector responses of 207 different
high-passfilters, whichweremade by combining 23 resistors (0.1–5.1 kΩ) and 9 capacitors (91–1000 pF).

To accurately restore the energy of each input signal from the summed signal, the characteristics of the input
signals should differ asmuch as possible. The accuracy of the energy estimation increased as the variance of the
estimators decreased. Therefore, we searched resistor and capacitor combinations that yield lowCramér–Rao
lower bound (CRLB) of a given linear system.Under the assumptions in section 2.3.1, the CRLBof a given linear
system can be derived as follows:

Table 1.Resistor (Ω) and capacitor (pF), and cut-off frequency (MHz) values for the tested high-pass filter sets.

Set CRLB
Ch1 Ch 2 Ch 3 Ch 4

R C fc R C fc R C fc R C fc

1 Lowest 150 91 11.66 1200 91 1.457 5000 91 0.350 5000 1000 0.032

2 Lowest 200 91 8.745 1200 91 1.457 5000 91 0.350 5000 1000 0.032

3 Lowest 150 91 11.66 750 120 1.768 5000 91 0.350 5000 1000 0.032

4 Lowest 240 91 7.287 820 91 2.133 1600 220 0.452 5000 1000 0.032

5 Modest 100 91 17.49 620 1000 0.257 1200 1000 0.133 3000 1000 0.053

6 Modest 100 91 17.49 680 220 1.064 150 1000 1.061 750 680 0.312

7 Highest 270 120 4.912 200 560 1.421 270 560 1.053 820 220 0.882

8 Highest 1200 91 1.457 270 470 1.254 620 220 1.167 750 820 0.259
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( ˆ) ( ˆ) ( ) ( ) A Ax xVar CRLB . 3T 12s= -

Becausewe assumed the variance of AWGN to be independent of A,we can ignore theσ2 term. In our case,
the CRLB is a 4× 4matrix; thus, instead of directly comparing theCRLB,we used the determinant (covariance
of different signals) and trace (variance of each signal) of theCRLB as representative values to compare thefilter
combinations. Based on theCRLBof the estimated solution, we selected the resistor–capacitor combinations
listed in table 1. Sets 1–4 had the lowest determinant and trace values, Sets 5 and 6 hadmoderate values, and Sets
7 and 8 had the highest values (figure 3(a)). Figure 3(b) shows the average output of each channel shaped by eight
different sets of high-pass filters (i.e. the detector response). Sets 1–4 yieldedwell-differentiated pulse shapes,
whereas Sets 5–8 resulted in the overlapping of at least two pulses.

To determine the best set of high-pass filters out of the eight candidate sets, we calculated the coefficient of
determination (R2) of the linear regression between the estimated (by the neural network) and true energies.
Additionally, the energy resolution of the photopeak in the energy spectrumwasmeasured using the estimated
energy.

2.5.Detector-level performance
Weapplied the best high-passfilter sets to each of four channels of the 4× 4 array-type SiPMand each of the four
row/column summed channels of the 8× 8 array-type SiPM,multiplexing the 16 channels into four readouts.
To verify the energy estimation performance, in addition to the fourmultiplexed channels, the signal of each
input channel was received separately as the ground truth. For each channel, the coefficient of determination
between the estimated and true energies was calculated. For the 4× 4 array SiPM, energy resolutionwas
measured at each channel.When an energy higher than 100 keVwasmeasured in two ormore channels, it was
considered that ICS has occurred. Additionally, the ratio of the photoelectric to ICS events wasmeasured.

Figure 3.Comparison of register and capacitor sets: (a)Cramér–Rao lower bound of tested high-pass filter sets and (b) the average of
each channel output shaped by eight different sets of high-passfilters (i.e. detector response)
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3. Results

3.1. Pseudo inversemethod
Figure 4 shows two representative cases: (a) correct estimation results and (b) incorrect estimation results, which
were obtained by applying the pseudo-inversemethod. Thefirst column infigure 4 shows themeasured
(summed ormultiplexed, black line) and estimated ( ·A x, blue lines) signals that are in good agreementwith
each other. The second and third columns show the actual high-pass-filtered signals before the summation and
their estimates (i.e. each column vector ofA× xi, normalized detector response× energy estimate), respectively.
As shown in this figure, pseudo-inversematrices often fail to estimate the energy and recover the input signal,
resulting in physically infeasible negative energy values. Therefore, no further analysis was performed on the
results of the pseudo-inversemethod.

Figure 4.Estimation results with pseudo-inversematrix: (a) correct case and (b) incorrect case.

Figure 5.AverageR2 value between the true and estimated signals using a neural network. The neural network inputs are the signals
summed (a) after the buffers or (b) before the buffers.
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3.2.Optimization of high passfilters
Figure 5(a) shows the estimation results with the signal summed after the buffers (the averageR2 between the
true and restored signals). Sets 1–4, which had the lowest CRLB, performed better than Sets 5–8, which had
modest or highCRLB values. Among Sets 1–4, Set 4 exhibited the best results, with the highest averageR2 values.
Figure 5(b) shows the estimation results with the signal summed before the buffers. Both the results show the
same tendency, indicating that the effect of the buffer on the performance of the proposedmethod is negligible.

Figure 6.Results obtained using register–capacitor Set 4 (best case): (a) regression lines between the true and estimated energy and (b)
the energy histograms.

Figure 7.Results obtained using register–capacitor Set 6 (worst case): (a) regression lines between the true and estimated energy and
(b) the energy histograms.
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Set 4 showed the largestR2 values (0.979, 0.994, 0.997, and 0.999 for each of the four channels, respectively)
when estimating the energy of the signal using the neural network from the summed signals generated before
passing through the buffers (figure 6(a)). TheR2 value depends on the time constant of the filter. The smaller the
energy is, the less accurate is the estimation. All four trend lines between the estimated energy and the ground
truth had the slope between 1.00± 0.01 and the y-intercept between 0.00± 0.01. The peak of the energy
histogramdrawn based on the estimated energy agreedwell with the true histogram (figure 6(b)). The energy

Figure 8. Floodmaps and energy regression lines for 1-to-1 coupled 4× 4 SiPMarray (a)floodmaps drawnwith individual readout
and the proposedmethod and (b) the energy regression lines of all the channels in the energy ranges ofE> 0 keV andE> 350 keV.

Figure 9. Floodmaps drawnusing only (a) photoelectric events and (b) inter-crystal scatter events.
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resolutions of each of the four channels with the estimated energy were 10.2%, 12.6%, 11.7%, and 11.2%, and
thosewith the ground truthwere 11.4%, 12.4%, 12.8%, and 11.9% respectively. Figure 7 shows the results of Set
6, which exhibited the lowestR2 values. 80 000 events were collectedwhen plotting regression lines.

3.3.Detector-level performance: 4× 4 SiPM
Figure 8(a) shows thefloodmaps generated using the center-of-gravity algorithm (Park and Lee, 2020) applied
to the true and estimated energies of the 4× 4 SiPMoutput signals. To verify the estimation accuracy, the
ground truth and estimated value of the energy in each channel were compared. Figure 8(b) shows the scatter
plots of the true and estimated energies of the 4× 4 SiPMoutput signals. Considering the full energy range, the
averageR2 values for all the channels were above 0.99. Considering the signals above 350 keV, the lowestR2 value
among the 16 channels was 0.944.

Figure 9 shows thefloodmaps composed using only the photoelectric events within the energywindow that
has the samewidth of energy resolution in each channel (figure 9(a)) and only ICS events with two ormore active
channels (figure 9(b)). Figure 9(b)was obtainedwith the energy centroid ofmultiple positions to visualize the
ICS events. Of the total events, the ICS events accounted for 17.01%. Figure 10 shows the energy resolution of
the true and estimated energies of 16 channels, yielding all the reasonable values of 8%–11%. Energy resolutions
of each channel were calculated using the entire energy spectrumby applyingGaussian fit around 511KeV
photopeak.

3.4.Detector-level performance: 8× 8 SiPM
Figure 11 shows thefloodmaps generated using the center-of-gravity algorithm applied to the true and
estimated energies of the row/column summed signals of the 1-to-1 coupled (figures 11(a) and (b)) and light-
shared 8× 8 SiPMs (figures 11(c) and (d)), respectively. Figures 11(b) and (d) show the scatter plots of the true
and estimated energies, respectively. Figures 11(e) and (f) show the averageR2 values for all channels at full
energy range. For both the 1-to-1 coupled and light-shared detectors, the averageR2 values for all channels were
rounded to 0.99 or higher.

3.5. Energy estimation of ICS events
Themain advantage of the proposedmethod is the energy estimation of each SiPMchannel from the
multiplexed signal, which allows to identify ICS andmultiple-events. Figure 12 shows examples of the 2D energy
distribution (upper row) and energy centroid (lower row) of the ICS eventsmeasured in 1-to-1 coupled 4× 4
LSO-SiPMdetector, whichwere estimated using the proposedmethod. The two energy peaks generated by ICS
are distinctly evident the estimated 3D energy distributionmaps, whichwere obtained utilizing only four
multiplexed readout channels in our proposedmethod. This ismarked improvement compared to the
conventional 2D charge division circuits, which only yield energy centroidmaps, as depicted in the lower row of
figure 12, using the same four readout channels.

Figure 10.Energy resolutions of each channel: (a) ground truth and (b) estimated.
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4.Discussions

4.1. Performance difference between themethod using the pseudo inversematrix and themethod using the
neural network
The performance of the estimationmethod utilizing the pseudo-inversematrix has been shown to be unreliable,
as evidenced by the results presented infigure 4. This instability can be attributed to several factors. (1)The
method assumes a noise-free environment, while the presence of various sources of noise in the circuit can result
in substantial errors. (2)The pseudo-inversematrix approach lacks the constraint that the energy levels of all
channelsmust be positive. As illustrated infigure 4(b), a negative energy estimation is resulted in, which is not
physically feasible. (3)The initiation points of the four channels are distinct due to the use of leading-edge
discrimination and the difference in the length of circuit pathway. The variance at each starting point can cause
significant errors in the estimation. (4)The use of the pseudo-inversematrix for calculation yields a single

Figure 11. Floodmaps and energy regression lines for 1-to-1 coupled and light-shared 8× 8 SiPMarray: (a) true and estimated flood
maps for 1-to-1, (b), (c) true and estimated floodmaps for light-shared, and (d) energy regression lines over the entire energy range for
light-shared (e)R2 value of each energy regression lines over the entire energy range for 1-to-1 (f)R2 value of energy regression lines
over the entire energy range for light-shared.
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estimate of energy, however, repeated iterations are typically required for the convex optimization. All these
issues could be solved using a neural network.

4.2.R2 value between high passfilter sets and channels
Channel 1wasmainly different between Sets 1 and 4. Set 4with the best performance utilized the largest time
constant of the high-pass filter for Channel 1. The results of Set 6, which exhibited the lowestR2 value, are shown
infigure 7.When compared to the results of Set 4, presented infigure 6, therewas no substantial difference in the
results for Channel 4. Nevertheless, the energy histogramproduced using the events of Channel 1 failed to
display any notable energy peaks. For each high pass filter sets, Ch1–Ch3 have bigger discrepancy between
estimation and truth. The reasonwhyCh1–Ch3 have bigger discrepancy is that Ch1–Ch3 have a higher cut-off
frequency. Therefore, the signal amplitude is smaller for the same gamma ray energy. This effect becomesmore
pronounced as the channel number increases, withCh1 having the smallest amplitude andCh3 the largest.
Smaller signal amplitude can lead to lower estimation accuracy. Therefore, Ch1 shows the lowestR2 value, and
more data are observed in small energy region.

4.3. The difference between the energy resolutionmeasuredwith the ground truth and the estimated energy
The proposedmethod resulted in successful energy estimation. The discrepancy between ground truth and
estimated energy is only approximately 1%. The difference in energy resolution values can be inferred from the
difference between the variances in the x- and y-directions at the 511 keV peak of the scatter plot.When the
variance in the x-direction exceeds that in the y-direction, the energy resolution of the estimation using
proposedmethod is larger compared to that of the ground truth, and vice versa. However, this discrepancy
would not have a significant impact on the overall image quality.

4.4. Expected impact of themethod on image quality improvement
We successfully identified the ICS event by accurately selecting the interacted crystal elements and estimating
respective energy depositions of the incident 511 keV gamma-rays. Practical charge divisionmethod is
intrinsically incapable of ICS identification because it assigns a single crystal closest to the energy centroid of
gamma-ray interactions (figure 12). In large portion of ICS events, crystals are differently assigned from the true
first interacted one, which induces ICS blurring (Zhang et al 2019, Lee and Lee 2021). ICS can occur between
crystals that are not adjacent to each other (case 3). As shown infigure 9(b), diagonal lines appear even between
the non-neighboring crystals, indicating an ICS event between them. This situation poses a challenge for
estimating thefirst interaction position accurately, using the conventional charge divisionmethod. Themargin
of error can be significantly larger, potentially leading to incorrect estimation of the position in an entirely
unrelated crystal.

Such ICS identificationwould serve as thefirst step for ICS recoverywhich is selecting the earliest interacted
crystal. Given the position and energy information of the gamma-ray interactions, we can recover ICS events by
applying simple energy comparison (Comanor et al 1996, Shao et al 1996, Surti andKarp 2018) or utilizing
complicatedCompton scattering physics (Rafecas et al 2003, Pratx and Levin 2009, Abbaszadeh et al 2018).

Figure 12. Four examples showing 2D energy distribution and energy centroid obtained using the proposedmethod: (a) case 1, (b)
case 2, (c) case 3, and (d) case 4.
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Moreover, identified information can be utilized as input ofmachine learningmethods dedicated to ICS
recovery (Michaud et al 2014, Lee and Lee 2021). Considering that preciseness of energy information is critical
for ICS recovery algorithms, good energy resolution of the proposedmethod is beneficial to achieve high
accuracy (figures 6 and 10).

Effect of ICS on PET image quality has been studied by several groups (Ritzer et al 2017, Teimoorisichani and
Goertzen 2019). Accurately determining the true LORs can alleviate spatial blurring, eventually improving
spatial resolution and lesion detectability of PET images (Surti andKarp 2018, Zhang et al 2019, Lee et al 2020).
When combinedwith accurate ICS recovery algorithms, the proposedmethod is expected to improve image
quality of various PET systemswith a relatively small number of read out channels.

4.5. Futurework
Because the system level cannot afford a 1 GHz sampling rate, as futurework, we plan to test various sampling
rates. Highermultiplexing ratios will also be evaluated. Tomitigate the need for a dedicated training set, we plan
to implement unsupervised transfer learning. Additionally, the feasibility of utilizing the proposedmethod for
efficient ICS recovery needs to be further confirmed.

5. Conclusion

In this study, a novelmultiplexingmethod based on the use of high-pass filters and a neural network is proposed
for SiPM readouts with the capability of pulse-shape restoration. The energy of signals from16 channels was
effectively restoredwithR2 value of 0.99, utilizing only four readouts. The proposedmethod, in conjunction
with the row-and-column summultiplexingmethod, achieved amultiplexing ratio to 16:1 in an 8× 8 SiPM.
Furthermore, the proposed approach accurately estimated the 2D energy deposit distribution in the LSO crystal
array, enabling the identification of ICS events. In conclusion, the proposedmethod has the potential to
efficiently recover ICS events by reducing the number of required signal readout channels in SiPMarrays.
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