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Abstract: The multiple thresholds used in multi-voltage threshold (MVT) method provide more
detailed information about the pulse amplitude of the input analog pulses than the simple time-
over-threshold (TOT) method, thus allowing for better energy estimation and pulse reconstruction
capabilities. However, as the number of thresholds increases, the number of comparators and digital
signal readout channels required for MVT also increases. This requirement owing to the increased
number of thresholds is the main disadvantage of MVT implementation using field-programmable
gate array (FPGA)-based time-to-digital converters (TDCs) because the FPGA resources required
for TDC implementation are substantial and FPGAs have a limited number of input/output ports.
Therefore, we propose a new single-line MVT method to improve the integrity of the FPGA-
only data acquisition system without analog-to-digital converters by reducing the FPGA input
channels required for the MVT method. The proposed method, which applies three different
levels of thresholding, reduces the digital output signal line in the MVT by employing a 3-input
XOR logic gate. The XOR gate integrates the output signals from the comparators and generates
1-bit line digital pulse train. We evaluated the energy performance of the proposed single-line
MVT method using three different energy estimators. The energy estimates were compared with
the ground truth energy calculated using domino-ring-sampler 4 (DRS4)-sampled analog pulses.
The proposed method showed virtually equivalent energy resolution to that of DRS4-based pulse
digitization method and better energy linearity than the conventional TOT method. Among the
energy estimation methods used in single-line MVT, the crossing-point triangular sum method
showed the best energy linearity. The proposed single-line MVT method will be useful when data
acquisition systems without ADCs are implemented using FPGA-based TDCs. This is because the
proposed method alleviates the problem of limited input ports and the numerous resources required
for TDCs in FPGAs.

Keywords: Data acquisition circuits; Front-end electronics for detector readout; Gamma detectors
(scintillators, CZT, HPGe, HgI etc)
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1 Introduction

Scintillation detectors, consisting of scintillation crystals and photosensors, are widely used for the
detection and measurement of ionizing radiation. A recent advance in scintillation detector technol-
ogy is the widespread utilization of silicon photomultipliers (SiPMs), which have several advantages
over conventional photomultiplier tubes [1–4]. Because SiPMs are insensitive to magnetic fields,
they are most widely used in magnetic resonance imaging (MRI)-compatible positron emission to-
mography (PET) systems for simultaneous PET/MRI scans [5–11]. In addition, the compactness of
the SiPM improves PET detector performance by increasing the light collection efficiency [12–14].
However, the high granularity of SiPMs due to their compact size has increased the number of
output channels and the complexity of signal readout and data acquisition electronics. To overcome
these problems, several analog signal multiplexing techniques have been proposed [15–22]. How-
ever, many advanced PET detectors, such as depth of interaction (DOI)-encoding detectors that use
light distribution information [23, 24], require SiPM signal readout and recording with no or only
moderate analog signal multiplexing.

Time-over-threshold (TOT) methods allow for the measurement of the energy information of
scintillation detectors with a high level of integration and low power consumption [25]. Highly
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accurate energy measurements are possible using waveform digitizers or free-running analog-to-
digital converters (ADCs) with high bandwidth and sampling rate [14, 26–30]. However, they are
expensive, have high power consumption, and require relatively large space [31]. By contrast, the
TOT technique estimates the energy (or charge) of a signal based on the signal pulse width, which is
determined by certain reference threshold(s) and can be implemented simply using comparators and
clock counters [32–35]. The accuracy of the TOT measurement can be improved by utilizing precise
time-to-digital converters (TDCs) instead of simple clock counters. In addition, highly integrated
TDCs can be implemented using field-programmable gate arrays (FPGAs) [36–39]. However,
the simple TOT method using a single threshold suffers from inferior energy linearity compared
with ADC-based measurements [17, 34, 40]. Therefore, several approaches have been proposed to
overcome the limitations of the TOT method. These advanced approaches include the dynamic TOT
method, which applies varying thresholds to the falling edge of the analog input pulse depending on
the pulse height [41, 42], and the sawtooth-shaped threshold method, which obtains multiple digital
pulses by applying a sawtooth-shaped threshold signal adaptively generated to the input pulse [43].
Another alternative is the widely used multi-voltage threshold (MVT) method, which applies two
or more fixed thresholds to achieve better energy performance by utilizing multiple digital pulse
trains with different widths [33, 44–46].

The multiple thresholds used in the MVT method provide more detailed information about the
pulse amplitude and timing of the input analog pulses than the simple TOT method, thus allowing for
better energy estimation and pulse reconstruction capabilities. However, as the number of thresholds
increases, the number of comparators and digital signal readout channels required for MVT also
increases. This requirement owing to the increased number of thresholds is the main disadvantage
of MVT implementation using FPGA-based TDCs because the FPGA resources required for TDC
implementation are substantial and FPGAs have the limited number of input/output ports.

Therefore, we propose a new single-line MVT method to improve the integrity of the FPGA-
only data acquisition system without ADCs by reducing the FPGA input channels required for the
MVT method. The proposed method, which applies three different levels of thresholding, reduces
the digital output signal line in the MVT by employing a 3-input XOR logic gate. The XOR gate
integrates the output signals from the comparators and generates 1-bit line digital pulse train. In the
following sections, we describe how the proposed method was designed and how its characteristics
were evaluated through experiments.

2 Materials and methods

2.1 Single-line MVT

The key concept of the single-line MVT method is to integrate digital pulses from each threshold
into a single line using an XOR gate, as shown in figure 1. When an analog scintillation pulse
passes through a comparator with a certain threshold, two timestamps are generated: one on the
rising edge and the other on the falling edge. When three different thresholds were applied, three
pairs of rising and falling edges were obtained. Applying a 3-input XOR gate to these three digital
pulses produces a 1-bit line digital pulse train with six distinguished timestamps. To exploit the
XOR gate, only an odd number of thresholds needs to be applied.

– 2 –
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Figure 1. Schematic of proposed single-line multi-voltage threshold method implemented with a 3-input
XOR gate.

Generally, the larger number of comparators used in the MVT method leads to better energy
performance (e.g., energy resolution and linearity) but increases the complexity and cost of front-
end and readout electronics [47]. Therefore, in this proof-of-concept study, only three comparators
with different thresholds and a 3-input XOR gate were used for 1-bit line digital pulse generation.

2.2 Circuit implementation

Figure 2 shows the circuit diagram of the proposed single-line MVT method. The analog pulse
from the photosensor (silicon photomultiplier) was amplified by a factor of 10 using a non-inverting
amplifier (AD8000; Analog Devices) and passed through an RC low-pass filter. The low-pass filtered
signal was fed to three comparators (ADCMP601; Analog Devices) with different thresholds, and
the digital outputs of the comparators were merged into a single-line digital pulse using a 3-input
XOR gate (NC7SZ386P6X; Onsemi).

Figure 2. Circuit diagram for the single-line MVT method.

– 3 –
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2.3 Experimental setup

As shown in figure 3, analog scintillation pulses were obtained using an LYSO-SiPM detector
in which a single 4 × 4 mm SiPM (ASD-EP-S-4; AdvanSiD; Trento, Italy) was coupled with a
3 × 3 × 20 mm LYSO crystal by optical grease (BC-630 Silicone Grease; Saint Gobain Crystals,
U.S.A.). A reference detector consisting of a photomultiplier tube and LYSO crystal was employed
to generate a coincidence signal used as a trigger for a domino-ring-sampler 4 (DRS4)-based
digitizer (DT5742B; CAEN, Italy), and a Na-22 source was attached to the reference detector. The
analog scintillation pulses and single-line digital pulse trains from the MVT circuit were sampled
at a sampling rate of 1 giga-samples/s. A total of 10,000 events, with 1,024 samples per pulse, were
recorded.

Figure 3. Experimental setup.

2.4 Energy estimator

In this technique, six discrete timestamps were derived from three different threshold voltages. We
applied three different energy estimators, shown in figure 4, to estimate the energy of each pulse
using six timestamps. The energy estimates were compared with the ground-truth energy calculated
using DRS4-sampled analog pulses.

First, the rectangular sum was calculated by generating rectangles with threshold values and
timestamps. Second, the trapezoidal sum was calculated by replacing the rectangles with trapezoids.
Finally, the crossing-point triangular sum was calculated by adding the triangular area at the top
of the pulse to the trapezoidal sum. The top vertex of the triangle is the crossing point of the two
lines extrapolated using the two highest thresholds (th2 and th3) and their timestamps. Estimated
energy (𝐸) value from each method is expressed with threshold values and TOT values, which
are interval between timestamps resulted in from thresholds. The estimated energy values of
rectangular sum, trapezoidal sum, and crossing-point triangular sum are expressed as following

– 4 –



2
0
2
3
 
J
I
N
S
T
 
1
8
 
P
0
6
0
2
1

Figure 4. Three different numerical integration methods for energy estimation: (a) rectangular sum, (b)
trapezoidal sum, and (c) crossing-point triangular sum.

equations from (2.1), (2.2), and (2.3), respectively.

𝐸 = th1 · TOT1 + (th2 − th1) · TOT2 + (th3 − th2) · TOT3 (2.1)

𝐸 =
1
2
· (th1 + th2) · TOT1 +

1
2
· (th3 − th1) · TOT2 +

1
2
· (th3 − th2) · TOT3 (2.2)

𝐸 =
1
2
· (th1 + th2) · TOT1 +

1
2
· (th3 − th1) · TOT2 +

1
2
· (th3 − th2) ·

(
TOT2 · TOT3
TOT2 − TOT3

)
(2.3)

The performance of the energy estimation using the proposed approach was also compared with
that of the conventional single-TOT method. The digital pulse generated by a single comparator
before passing through the XOR gate was used for conventional TOT.

2.5 Optimization of pulse shaping and threshold level

We optimized the pulse shaping and threshold level owing to the performance dependence of
the proposed methods on these settings. The fast-rising edge of the scintillation pulse can cause
timestamps to overlap, resulting in false digital pulses through signal integration using an XOR
gate. However, excessive smoothing of the analog pulse with a low-pass filter can degrade the
timing performance. Therefore, the employment of minimal low-pass filtering is necessary, which
allows for accurate pulse reconstruction. To determine the optimal low-pass filtering conditions,
the passive first-order low-pass filters with six different RC constants (5.6 ns, 10 ns, 15 ns, 31.36 ns,
56 ns, and 84 ns) were implemented and tested (figure 2).

We also investigated the effect of threshold level on the energy performance of the proposed
method. The lowest threshold level varied between 30 mV and 70 mV in steps of 10 mV. The interval
between the three thresholds was also changed from 10 to 40 mV in steps of 10 mV. Average peak
height of scintillation pulse was about 400 mV at 84 ns RC constant.

2.6 Event validity check

As mentioned previously, the fast-rising edge of the scintillation pulse can generate false digital
pulses through the XOR gate. Therefore, a careful examination of event validity based on prior
knowledge of scintillation pulse properties (e.g., the falling edge is longer than the rising edge) is
required. Figure 5 shows examples of correct and erroneous digital pulses generated by the XOR
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gate. As shown in figure 5, both four and six timestamps can generate two digital square pulses (A,
D, E, and F). Among them, only A can be considered a valid event, because the width of the first
pulse occurring on the rising edge is shorter than the width of the second pulse occurring on the
falling edge.

Similarly, two and four timestamps can generate a single digital square pulse. Event B in
figure 5 can be considered invalid owing to the delay in the first timestamp. Events with more than
six timestamps, mainly caused by noisy falling edges, were discarded.

Figure 5. Correct and erroneous digital pulse trains generated by the XOR gate with (a) 4 timestamps and
(b) 6 timestamps.

2.7 Energy linearity

The energy linearity of each method was measured using 4 different radiation sources, Co-57,
Ba-133, Na-22, Cs-137 with 122 keV, 356 keV, 511 keV and 662 keV, respectively. The true and
estimated energy value s were fitted using linear line and the energy linearity was estimated in terms
of goodness-of-fit (𝑅2).

3 Results

3.1 XOR output pulses

Figure 6 shows typical output pulses generated by the XOR gates. A single reference threshold
produces two timestamps: one on the rising edge and the other on the falling edge. The numbers of
digital pulses and timestamps were determined depending on the magnitude of the scintillation pulse.
In all cases, the leading timestamps contain rising edge information, and the trailing timestamps
represent falling edge information.

– 6 –
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Figure 6. Digital pulse trains recorded using a GHz DRS4 digitizer with (a) 2 timestamps (b) 4 timestamps,
and (c) 6 timestamps.

3.2 Event validity

The rate of invalid events was effectively reduced by applying low-pass filters to scintillation pulses.
As shown in figure 7, the number of detected errors on the rising and falling edges decreases
exponentially as the RC constant of the low-pass filter increases. When a low-pass filter with an
84 ns RC constant was applied, 91% of the detected events showed six timestamps after the event
validity check (figure 8). Less than 1% of the events showed more than eight timestamps caused by
noise.

Figure 7. Number of erroneous events out of 10,000
events filtered by event validity check.

Figure 8. Number of events versus timestamp
numbers.

3.3 Energy spectra and resolution

Figure 9 shows the energy spectra measured using the ADC, conventional single TOT, and proposed
single-line MVT methods. The spectra were scaled to obtain photopeak positions at 511 keV. For
the single-line MVT, an 84 ns RC filter and comparator thresholds of 70, 100, and 130 mV were
applied, and the energies were estimated using the crossing-point triangular sum method. For a
single TOT, a threshold of 70 mV was applied. Low-energy scatter events were not measured by
conventional TOT and the proposed single-line MVT methods because of the 70 mV comparator
threshold.

– 7 –
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Figure 9. Energy spectra obtained using single-line MVT, simple TOT, and ADC methods.

The energy resolution measured using the single TOT and single-line MVT methods improved
with increasing RC constant, as shown in figure 10, where the energy resolution of the single-line
MVT is the average of the three different energy estimators. By applying an 84 ns RC filter, we
achieved an energy resolution nearly equivalent to that of the ADC (approximately 10%). With this
low-pass filter setting, the energy resolution of a single-line MVT improved as the lowest threshold
increased when swept at 50, 60, and 70 mV, with the threshold interval fixed at 30 mV (figure 11).

Figure 10. Energy resolution versus RC constants of the low-pass filter.

3.4 Energy linearity

The energy linearity of the proposed method was assessed using events obtained at the optimal
setting in terms of energy resolution (84 ns RC filter and 70, 100, and 130 mV thresholds). As
shown in figure 12, the proposed single-line MVT outperforms the simple TOT method in terms
of goodness-of-fit (𝑅2). Among the energy estimation methods used in single-line MVT, the
crossing-point triangular sum method showed the best energy linearity, as 0.96.

– 8 –
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Figure 11. Energy resolution of single-line MVT with different energy estimation (pulse integration) methods
ver-sus the lowest threshold.

Figure 12. Regression lines indicating a linear relationship between the energy and measurements from 4
different radiation sources on each method.

4 Discussion

The proposed method showed virtually equivalent energy resolution to that of the DRS4-based pulse
digitization method and better energy linearity than the conventional TOT method. In conventional
TOT, only a pair of sampling points at a fixed threshold is available for energy estimation, leading to

– 9 –
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poor energy resolution and linearity. By contrast, the proposed single-line MVT method collects six
sampling points per event; however, it requires only a single digital readout channel. The increased
data sampling from an analog pulse allows for a more precise energy estimation as long as proper
analog pulse shaping is applied, which is optimized by performing an event validity check.

We compared three different methods (figure 4) for energy estimation using the six sampling
points provided by the single-line MVT method. The crossing-point triangular sum method showed
the best energy resolution and linearity, but its computational complexity was higher than that of
other methods. Non-linear curve fitting using specific scintillation pulse modeling may provide
better energy estimation performance. However, the substantial computational burden required for
nonlinear curve fitting renders real-time energy estimation impossible.

5 Conclusion

In this study, we proposed a single-line MVT method that allows for the reduction of digital output
channels from the conventional MVT method by adding an XOR logic gate after the multiple
comparators used in the MVT method. The proposed method showed equivalent energy resolution
and good energy linearity compared with DRS4-based GHz pulse sampling. This is especially
useful when data acquisition systems without ADCs are implemented using FPGA-based TDCs.
This is because the proposed method alleviates the problem of limited input ports and the numerous
resources required for TDCs in FPGAs.
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