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Abstract—For an objective interpretation of cerebral metabolic
pattern to find epileptogenic zones in patients with temporal lobe
epilepsy (TLE), we developed a computer-aided classifier using
an artificial neural network (ANN). We studied 261 epilepsy
patients diagnosed as no abnormal findings (NA, = 64),
left TLE ( = 116), or right TLE ( = 81) on interictal
brain F-18-flurodeoxyglucose positron emission tomography
(FDG PET) by the consensus of two expert physicians. Seventeen
asymmetry indexes between the mean counts of the 34 mirrored
regions were extracted from the spatially normalized images and
used as input parameters. The three diagnoses of NA, left TLE,
and right TLE were used as outputs of the ANN. The structure of
the ANN was optimized with variable error goals and the number
of hidden units. On the criteria of agreement of diagnoses with
those of expert viewers, the best classifier was chosen, which
yielded a maximum average agreement of 85% for the test set
when we used an error goal of 20 (sum of squared error) and ten
hidden units. We could devise an ANN that performed as well in
diagnosing left or right TLE on FDG PET as human experts and
could be used as a clinical decision support tool.

Index Terms—Artificial neural network, brain PET, epilepsy,
spatial normalization.

I. INTRODUCTION

L OCALIZATION of epileptogenic zones is the most
important step in selecting patients with medically

intractable focal epilepsy for potential surgical cures. The loca-
tions of epileptogenic zones are found using the clinical criteria
produced by the sum of noninvasively acquired findings, such
as clinical semiology, ictal and interictal electroencephalogram
(EEG), magnetic resonance image (MRI), F-18-flurodeoxyglu-
cose positron emission tomography (FDG PET), and ictal
and interictal perfusion single photon emission computed
tomography (SPECT) [1]–[3].
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Epileptogenic zones show characteristic decreased glucose
metabolism on FDG PET. The diagnostic accuracy of FDG
PET has been found to be 70–85% according to cumulated
analyses of reports in the literature [1], [3]. FDG PET has been
found to be extremely helpful for localization of epileptogenic
zones, especially in patients without prominent structural
abnormality. However, hypometabolic regions on FDG PET
were not confined to epileptogenic zones. Adjacent or even
remote cortical areas beyond epileptogenic zones could show
decreased glucose metabolism. Experienced nuclear medicine
physicians have been trained to recognize exact epileptogenic
zones by analyzing metabolic patterns referring to the final
surgical outcome and the combined information obtained from
clinical semiology, MRI, ictal EEG and ictal SPECT. They
apply these criteria to their interpretation of PET images to
localize epileptogenic zones.

Artificial neural networks (ANN’s) had recently been applied
to an automated interpretation of functional brain images. These
were used for differentiating Alzheimer’s disease or vascular
dementia from normal aging on FDG PET or perfusion SPECT
[4]–[10]. In these studies, multiple regions of interest (ROI’s)
had been drawn manually to find out the characteristic distribu-
tion pattern of cerebral metabolism or perfusion [4]–[10]. The
manual drawing of ROI’s on individual images was so time con-
suming and subjective that the development of automatic spatial
normalization was mandatory and a prerequisite for the devel-
opment of an automatic interpretation system.

In this study, an artificial intelligence system was designed for
interpreting FDG PET to find epileptogenic zones based on the
diagnostic criteria and the decision rules of human experts. We
adopted a spatial normalization method [11]–[16] using a stan-
dardized template of PET images. Asymmetric indexes of mir-
rored regions to the midline were used for 17 cerebral regions
from predefined volumes of interest (VOI’s) on the template.
Using these asymmetry indexes as input parameters and the cor-
rect diagnoses as output nodes, characteristic features were ex-
tracted using the scheme shown in Fig. 1 and the agreement rates
were enhanced and optimized by varying error goals and hidden
nodes.

The performance of optimized ANN was compared to those
of linear discriminant analysis and another human expert who
was not involved in the gold standard classification, in order to
judge whether the performance of ANN is superior to a more
traditional technique and is clinically acceptable or not.
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Fig. 1. Schematic diagram of the automatic interpretation system for epileptogenic zones on FDG PET.

II. M ETHODS

A. Patient Population

Three hundred and twenty-five epilepsy patients who under-
went brain FDG-PET were classified by the diagnosis made
with visual interpretation by two experienced nuclear physi-
cians. Pediatric patients less than 15 years old and patients with
gross structural abnormalities on MRI were excluded. To meet
the need for a sufficient amount of data for the training of the
ANN, patient groups with small numbers of patients were ex-
cluded. Patients with no abnormal findings (NA, ), left
temporal lobe epilepsy (TLE) (left TLE, ) or right tem-
poral lobe epilepsy (right TLE, ) were selected for in-
clusion in this study. There were 261 patients (

years old) in all. Seventy of these patients
underwent surgery and were followed for more than six months.
Fifty-two of the 53 surgically treated TLE patients showed fa-
vorable outcomes (Engel class I or II) and were confirmed to
have left TLE or right TLE. Seventeen of the subjects with
normal FDG PET were operated on after invasive study. Thir-
teen showed favorable outcomes (Engel class I or II), and were
confirmed to have neocortical or temporal lobe epilepsy.

B. PET

370 MBq (10 mCi) of F-18-FDG was injected, and PET
studies were performed on an ECAT EXACT 47 scanner
(Siemens-CTI, Knoxville, TN). Transaxial images were recon-
structed with a Shepp filter (cutoff cycles/pixel) as 128

47 matrices with a size of 2.1 2.1 3.4 mm.

C. Image Analysis and Feature Extraction

All the PET images were converted to the ANALYZE format
(The Mayo Clinic, Rochester, NY) and were transferred to the
SPM96 program (Statistical Parametric Mapping 96, Institute
of Neurology, University College of London, U.K.) for spatial
normalization.

Header files and image matrices comprising transverse
slices running from the bottom to the top of the brain were
separated and reformatted. Image files in ANALYZE format

were spatially normalized into the MNI (Montreal Neurolog-
ical Institute, McGill University, Montreal, Canada) standard
template using the SPM96 [12], [13]. Affine transformation
was performed to determine the 12 optimal parameters to
register the brain on the template. Subtle differences between
the transformed image and the template were removed by
the nonlinear registration method using the weighted sum of
the predefined smooth basis functions used in discrete cosine
transformation. Spatially normalized images were smoothed by
convolution with an isotropic Gaussian kernel with 16 mm full
width at half maximum (FWHM) to suppress noise or residual
differences in the gyral anatomy. The count of each voxel was
normalized to the whole count of cortical areas to compensate
for the difference in global count caused by the amount of the
total injected dose and individual uptake characteristics.

After these spatial and count normalizations, the features
representing the pattern of cerebral metabolism were extracted
from the predefined volumes of interest (VOI) on the standard
template. Seventeen asymmetry indexes of mirrored regions
to the hemispheric midline were calculated from 34 VOI’s of
cerebral regions on the standard template and spatially normal-
ized images. Table I shows these 17 cerebral regions on each
hemisphere and their abbreviations. Since the most relevant
characteristic abnormal findings on FDG PET in the patients
with TLE was an asymmetrically decreased metabolism of
temporal and adjacent lobes, the largest asymmetry was closely
related to the location of epileptogenic zones. The asymmetry
index of the mirrored regions was defined as the following
equation and used for the input parameter:

and are the mean counts of the regions (VOI’s) in the
right and left hemispheres, respectively.

D. Neural Network Classifier

An ANN classifier was designed in the environment of
Matlab 5.1 (Mathworks, Natick, MA) to automatically inter-
pret the cerebral metabolic patterns of epilepsy patients. A

Authorized licensed use limited to: Seoul National University. Downloaded on July 9, 2009 at 22:35 from IEEE Xplore.  Restrictions apply.



LEE et al.: LOCALIZATION OF EPILEPTOGENIC ZONES IN F-18 FDG BRAIN PET OF PATIENTS WITH TEMPORAL LOBE EPILEPSY USING
ARTIFICIAL NEURAL NETWORK

349

TABLE I
BRAIN AREAS AND THEIR ABBREVIATIONS

DEFINED FOR THESEGMENTATION OF THESTANDARD TEMPLATE: THE BRAIN

WAS SEGMENTED INTO 34 AREAS (17 AREAS IN EACH HEMISPHERE)
CONVENTIONALLY USED IN THE INTERPRETATION OFFDG PET IMAGES

BY EXPERIENCEDNUCLEAR PHYSICIANS

three-layer feedforward error backpropagation neural network
with 17 input nodes and three output nodes was used [17], [18].
The structure of our network is shown in Fig. 2. This network
was trained to interpret metabolic patterns and produce identical
diagnoses to those of expert viewers. The asymmetry indexes
of the mirrored regions were normalized to have the same mean
and standard deviationsmean standard deviation .
These 17 indexes were provided for each input node as the
summarized information of PET images for our neural network.
Output nodes were set to for NA, for left
TLE, and for right TLE. Sigmoid function was
selected as the activation function of each node and gave the
diagnostic output value in the range of . Momentum and
an adaptive learning rate were used to improve the performance
of the network and accelerate its learning speed. Initial weights
and biases were distributed randomly. The number of training
epochs was constrained to 600.

E. Optimization and Performance Evaluation of the ANN

To find the optimal structure of the ANN, it was tested
with variable error goals as the criteria to stop the training.

Fig. 2. Structure of a three-layer neural network: one hidden layer, 17 input
nodes, and three output nodes.

The number of nodes in the hidden layer (hidden units) was
also varied. The error signal at theth output neuron at the
presentation of theth training pattern was defined by

where is the desired response for neuronat pattern
and is the output signal appearing at it.

The sum of squared error was obtained by summing the
squared error over all and , as shown by

where denote the total number of patterns contained in the
training set.

The ANN’s were designed to stop the training when the sum
of squared error reached their error goals. Error goals were set in
the range of 5–50 in increments of five. The number of hidden
units was set in the range of 5–30 in increments of five. The
ANN was trained using 40 randomly selected images from each
group. The performance of each ANN was tested using the re-
maining 141 images (NA 24, left TLE 76, and right TLE 41)
(Table II).

The training and test sets were selected from the whole sub-
ject population in a random fashion 100 times. With each ran-
domized test, ANN’s were composed with variable error goals
and numbers of hidden units. For each ANN, 50 experiments
were performed with a randomized initial condition for weights
and biases, and their performances (agreement rates of the di-
agnoses of ANN’s with those of human experts) were averaged.
A resulting performance map displaying the average agreement
ratio for the pairs of error goals and the number of hidden units
was composed. Finally, the performance maps from the 100 ran-
domized training and test sets were averaged. In this way, the
final optimal structure of the ANN classifier was selected. The
schema of this procedure is summarized in Fig. 3. The perfor-
mance of the final optimal ANN was analyzed for concordant
and discordant cases.
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TABLE II
NUMBER OF SUBJECTS FORNEURAL NETWORK CLASSIFICATION

Fig. 3. Procedure of the experiment to find the optimal structure of the ANN.

F. Comparison to Other Methods

To compare the performance of ANN against a more tradi-
tional statistical technique, linear discriminant analysis was per-
formed on the same 100 training and test sets, which is imple-
mented in the statistical toolbox of Matlab.

To judge whether the performance of ANN is clinically ac-
ceptable or not, an expert other than those involved in the gold
standard classification performed blind classification and the re-
sult was compared with that of ANN. Since he had been trained
for four years by the experts who had classified the PET images
in the first place, he was appropriate for the comparison with
ANN. He was blind to individual clinical diagnoses, examined
each PET scan, and assigned one of the three diagnoses.

III. RESULTS

A. Feature Extraction

Spatial normalization was performed successfully on all the
PET images. Profiles of the mean asymmetry indexes of the mir-
rored regions in NA (circle and solid line), left TLE (triangle
and solid line), and right TLE (square and solid line) groups are
shown in Fig. 4. Positive and negative values for asymmetry in-
dexes indicated hypometabolism at left and right cerebral hemi-
spheres, respectively. Asymmetry indexes in the NA group did
not deviate from value zero and lay within the range of1%.
The asymmetry indexes of the left TLE and right TLE groups
showed asymmetry in the respective hemispheres and these in-
dexes were more prominent in the temporal lobes (AT, PT, MT,
LT, and ST).

B. Optimization and Performance Evaluation of the ANN

An averaged performance map is displayed according to the
error goals and the number of hidden units in Fig. 5. The per-
formance of the network could be optimized at the error goal
of 20 (sum of squared error). The number of hidden units did
not seem to significantly influence the performance of the net-
works. However, the agreement rate tended to increase as the
number of hidden units decreased. The agreement rate was max-
imal with ten hidden units. The network showed a maximum av-
erage agreement rate when it was trained with ten hidden units
and an error goal of 20. The maximum average agreement rate
was 85.0%.

C. Analysis of the Performance of the Optimized Network

The performance of ANN with optimized structure (ten
hidden units and an error goal of 20) was superior to those
of linear discriminant analysis and blind classification by
the other human expert (Table III). Comparison data of the
diagnoses by each method and the gold standard is summarized
in Tables IV–VI. Data of ANN and linear discriminant analysis
were the results for the test sets. All three had agreement rates
of more than 80% for both the TLE groups, however, linear dis-
criminant analysis and the other expert had lower performance
for the discrimination of the NA group from the TLE groups
(14.1% and 57.8%, respectively). Rarely did ANN, moreover,
indicate contralateral hemispheres for the TLE group (1.5%
for left TLE and 0.5% for right TLE). This high lateralization
accuracy was comparable or superior to the expert (1.7% for
left TLE and 3.7% for right TLE). Linear discriminant analysis
showed the lowest performance in this characteristic as well
(16.5% for left TLE and 14.5% for right TLE).
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Fig. 4. Profile of the asymmetry indexes of mirrored regions in NA (circle and solid line), left TLE (triangle and solid line), and right TLE (square andsolid line)
groups. Profile of NA group did not diverse from they = 0 line. Those of left TLE and right TLE groups showed the obvious deviation represented by asymmetric
metabolism. In particular, the asymmetry of temporal areas (AT, PT, MT, LT, and ST) was more apparent than any other areas.x axis: 17 brain areas,y axis: mean
asymmetry index between right and left hemisphere.

Fig. 5. Averaged performance map according to the error goals and the number
of hidden units. The performance of the network could be optimized at the
error goal of 20 (sum of squared error). The number of hidden units did not
seem to significantly influence the performance of the networks. However, the
agreement rate tended to increase as the number of hidden units decreased.
Agreement rate was maximal with ten hidden units. The network showed a
maximum average agreement rate when it was trained with ten hidden units
and an error goal of 20. Maximum average agreement rate was 85%.

TABLE III
OVERALL AGREEMENTRATES WITH THE DIAGNOSIS BY THEHUMAN EXPERTS

D. Representative Examples of the Performance of the
Optimized Network

Figs. 6–9 are the representative examples of the concordant
or discordant cases among the test sets diagnosed by a network
with the expected performance (agreement rate of 85.0%).

Fig. 6 shows PET images (upper) and the profile of the asym-
metry index (lower) in a patient who was classified as NA by
both human experts and the network. The dotted line with ver-
tical bars in the lower curves represents the mean and the stan-
dard deviations of the NA group of patients. The solid line cor-
responds to the profile of the asymmetry index of this patient.
No area was found with hypometabolism on FDG PET. All the
asymmetry indexes of this patient lay within the range of normal
mean standard deviationvalues.

Fig. 7 shows a patient who was classified as left TLE by both
the human experts and the network. Human experts diagnosed
this case as left TLE on the basis of the slightly decreased me-
tabolism in both the left medial and lateral temporal area shown
in the coronal view and in the left anterior temporal lobe shown
in the transaxial view. Since the asymmetry of the metabolism
was not obvious and the metabolism of the right medial temporal
lobe was decreased more than that of the left side (green arrow
in coronal view), it was one of the difficult cases for the human
experts to diagnose. The metabolic differences in the medial and
lateral temporal lobe were also small, in the profile of the asym-
metry. The profile of the asymmetry properly represented the
asymmetries in the other temporal areas including the anterior
temporal lobe. The successful diagnosis by ANN may be based
on these findings.

Fig. 8 shows a patient who was classified as right TLE by
both human experts and the network. It was also a difficult case
for the human expert to diagnose. Focally decreased metabolism
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TABLE IV
COMPARISON OF THEDIAGNOSIS BY ARTIFICIAL NEURAL NETWORK TO THAT OF THE HUMAN EXPERTS

TABLE V
COMPARISON OF THEDIAGNOSIS BY LINEAR DISCRIMINANT ANALYSIS TO THAT OF THE HUMAN EXPERTS

TABLE VI
COMPARISON OF THEDIAGNOSIS BY THE OTHER EXPERT TOTHAT OF THE HUMAN EXPERTS

in the left inferior temporal area shown in coronal view (green
arrow) in comparison to the right side confused the human ex-

perts. They diagnosed, however, this case as right TLE since
the decreased metabolism in right medial temporal lobe (white
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Fig. 6. PET images (upper) and the profile of the asymmetry index (lower) in
a patient who was classified as NA by both human experts and the ANN. The
dotted line in the lower curves represents the mean and standard deviations of
the NA group, and the solid line corresponds to the asymmetry index profile of
this patient. No abnormal hypometabolism was shown on PET images. All the
asymmetry indexes of this patient described this pattern of PET images and lay
within the range of mean�(1� standard deviation) of the normal distribution.

arrow in transaxial view) was more apparent. The profile of the
asymmetry confirmed that the decreased metabolism in the right
medial temporal lobe was more severe than the left side and
showed that the metabolism of the right hemisphere was de-
creased globally.

E. Example of the Case with Erroneous Determination

Fig.9 is the case of a patient who was differently classified
by the human experts (left TLE) and most of the networks as
well as this one (right TLE). The profile of the asymmetry index
represented the decreased metabolism in the right hemisphere.
This distribution was obviously shown in the left PET image
(white arrows). Human experts, however, diagnosed this patient
as left TLE on the basis of the hypometabolism in the left ante-
rior temporal lobe indicated by the green arrow. The profile of
the asymmetry index showed that there was no metabolic dif-
ference in both the anterior temporal (AT) areas. This seems to
be because that the extent of the hypometabolic area was very
small compared with that of the AT area, which we defined.

IV. DISCUSSION

In this study, we designed an optimal artificial intelligence
classifier for the diagnosis of epileptogenic zones and investi-

Fig. 7. A patient who was classified as left TLE by both the human experts and
the network. Since the asymmetry of the metabolism was not obvious and the
metabolism of right medial temporal lobe was decreased more than that of the
left side (green arrow in coronal view), it was one of the difficult cases for the
human experts to diagnose. The profile of the asymmetry properly represented
the asymmetries in the temporal areas including the anterior temporal lobe. The
successful diagnosis by ANN may be based on these findings.

gated the performance of this classifier by examining the agree-
ment rates of the diagnosis in comparison to that of human ex-
perts. As distribution of regional cerebral glucose metabolism in
epilepsy is characteristic on FDG PET, input parameters could
be extracted easily from the PET images by referring simply to
the pattern of asymmetry. Asymmetric indexes for mirrored re-
gions representing decreased regional cerebral glucose metabo-
lism were used as input parameters to train our ANN.

The optimal range of the error goal for stopping the training
of the network and number of hidden units were estimated by
repeated randomized experiments, and found to be 20 (sum of
squared error) and ten respectively. When networks trained with
these error goal and number of hidden units were tested for their
performance, agreement rates between ANN and the human ex-
perts averaged at 85.0% for the test set (Fig. 5), which was supe-
rior to those of linear discriminant analysis (69.7%) and blind
classification by the other human expert (80.5%). The agree-
ments of ANN’s developed by other investigators were in the
range of 80–86% [9] or the areas (AUC) of receiver-operating
characteristic (ROC) curves were about 0.9 [7] using Tc-99m-
HMPAO perfusion SPECT in the discrimination of Alzheimer
disease and vascular dementia from normal aging. An ANN de-
signed on FDG PET performed just as well [5]. Pageet al. [7]
insisted that their network performed better than
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Fig. 8. A patient who was classified as right TLE by both the human experts
and the network. Focally decreased metabolism in left inferior temporal area
shown in coronal view (green arrow) in comparison to the right side confused
the human experts, however, this case was classified as right TLE since the
decreased metabolism in right medial temporal lobe (white arrow in transaxial
view) was more apparent. The profile of the asymmetry confirmed that the
decreased metabolism in the right medial temporal lobe was more severe than
the left side, and showed that the metabolism of right hemisphere was decreased
globally.

that of the alternative statistical techniques or
even expert viewers . They had used clinical cri-
teria as a gold standard to examine the performance of their net-
work. In this study we used three sets of images based upon the
diagnosis of human experts. Further studies are warranted on
the comparative performance of the neural network and human
experts, based upon the diagnosis in patients whose epilepto-
genic zones have been proven by pathology and surgical out-
come. After comparing the diagnostic accuracy of the ANN and
of human experts, evaluation of the additive value of the ANN
would be possible.

Using the ANN developed in this study, we went further to
test its performance in localizing other epileptogenic zones in
the remaining 60 patients belonging to the other groups. We
performed this task to see whether the neural network based its
judgment of output diagnosis only on the global asymmetry be-
tween the cerebral metabolism of both hemispheres or not. If the
network operated in such a manner, we thought that most diag-
noses of the other types would all be the left or right TLE. Lat-
eral temporal lobe epilepsy was, however, diagnosed as left or
right TLE in 41% of the cases, parietal or occipital lobe epilepsy
was diagnosed in 41% of the cases, and frontal lobe epilepsy was
diagnosed in 35% of the cases. This result may suggest that our

Fig. 9. A patient who was differently classified by the human experts (left
TLE) and most networks (right TLE). The profile of the asymmetry index
represented the decreased metabolism in right hemisphere. This distribution
was obviously shown in left PET image (white arrows). Human expert,
however, diagnosed this patient as left TLE on the basis of the hypometabolism
in left anterior temporal lobe indicated by gray arrow. The profile of the
asymmetry index showed that there was no metabolic difference in both the
anterior temporal areas (AT).

system actually considered hypometabolism in temporal areas
as an important factor in its judgment as well as global asym-
metry. This may be a good characteristic. Lateralization, more-
over, was almost perfect (95%) in these cases.

In this study, we restricted our goal to the classification of
temporal lobe epilepsy. This was because the number of subjects
in other groups and the amount of resulting data were too small
to train the ANN. In order to classify all classes of epilepsy,
the adoption of a fuzzy classifier or expert system using prior
knowledge provided by human experts would be necessary for
our system. We would, of course, also have to recruit more pa-
tients belonging to other groups.

We increased the degree of freedom by selecting a multilay-
ered ANN which had the superior ability of self learning without
any prior knowledge of diagnostic criteria or decision rules. This
multilayered ANN would be able to show that the important
property of functional connectivity in the human brain could
be represented by complex connections of hidden layers of net-
work. Information about the relationships between specific ab-
normal cerebral regions and resulting diagnoses could be ob-
tained by analyzing resulting weights between nodes. The ANN
developed in this study could be used as a training aid for less ex-
perienced physicians, or to highlight the information from FDG
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PET for epilepsy experts from different clinical subspecialties
as they try to understand FDG PET findings. Further develop-
ment of integrated diagnostic systems including SPECT, MRI,
EEG, and PET is warranted in order to improve the accuracy
of localization of epileptogenic zones solely with noninvasive
techniques. This ANN could be upgraded to an integrated arti-
ficial intelligence system using this approach.

V. CONCLUSION

We conclude that our ANN performed as well in diagnosing
epileptogenic zones on FDG PET as human experts and could
be used as a clinical decision support tool for the localization of
epileptogenic zones on FDG PET.
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