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Background and Purpose. It has been shown that heterogeneity
of cerebral glucose metabolism is increased in neuropsychiatric
degenerative diseases. However, proper assessment of older
patients requires knowledge about the effect of aging on hetero-
geneity. This study characterized the effects of aging on the het-
erogeneity of the distribution of cerebral glucose metabolism in
healthy volunteers. Methods. Sixty-six healthy volunteers (age
range, 19-75 years) underwent flurodeoxyglucose brain posi-
tron emission tomography (PET), and all the PET images were
spatially normalized onto a previously segmented standard
brain template to parcel the brain regions automatically. Fractal
dimension was regarded as a quantitative measurement for the
heterogeneity of cerebral glucose metabolism and obtained for
9 brain regions. Participants were subdivided into young/midlife
and elderly groups, and the Student t test was applied to the
comparison of fractal dimensions in those groups. Analysis of
covariance was performed for each region to explore the effects
of age, gender, age-by-gender interaction, and total counts in
the brain on the observed metabolic heterogeneity. Results.
Fractal dimensions were higher for elderly volunteers in most
brain regions. Differences between the 2 groups in fractal
dimension emerged within the whole gray matter, temporal
lobe, striatum, and cingulate. No significant gender differences,
age-by-gender interactions, or total counts were observed. Sig-
nificant age effects were observed in the whole gray matter,
frontal lobe, temporal lobe, striatum, and cingulate gyrus. Con-
clusions. Heterogeneity in the cerebral glucose metabolism of
healthy volunteers increased with age, and individual variations

of heterogeneity were higher in older volunteers. However, there
was no significant difference between male and female volun-
teers of the same age. The effect of age on heterogeneity was
not regionally uniform.
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Heterogeneity of the distribution of radiopharma-
ceuticals, or their underlying physiological parameters,
has been assessed using various mathematical indices,
including the coefficient of variation, entropy, and fractal
dimension.1-6 It has been shown that heterogeneity in
cerebral blood flow (CBF) and glucose metabolism in
neurodegenerative diseases, such as Alzheimer’s disease,
is altered compared to that of normal controls.7-11 Nagao
et al performed a series of investigations on the
heterogeneity in the CBF in Alzheimer’s disease using
single-photon emission computed tomography (SPECT)
and fractal analysis by the intensity thresholding
method.9,10 When they applied fractal analysis to the Tc-
99m-HMPAO brain SPECT images of patients with
probable Alzheimer’s disease, the fractal dimension for
the patients was significantly higher than in healthy con-
trol participants and correlated well with the degree of
cognitive impairment, as assessed in neuropsychological
tests.10 Moreover, the patients with very early Alzheimer’s
disease, with mild cognitive impairment (grade 0.5 on a
clinical dementia rate), could be segregated from normal
controls by fractal dimension.9

However, proper assessment of elderly patients with
neurodegenerative diseases, such as Alzheimer’s disease,
requires knowledge about the effects of aging. There have
been many reports showing age- and/or gender-related
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effects on the regional CBF,12-14 glucose metabolism,15-23

and several neuroreceptor systems.24-26 Usually, those
effects are regionally specific. Some regions are more vul-
nerable to these effects than are others. A linear model fits
the data well for some regions, but nonlinear models are
better in others. The regionally different pattern of such
effects could alter the heterogeneity in distribution of
radiotracers in the brain relative to age and/or gender.

The aim of this study was to characterize the effects of
aging and gender on the heterogeneity of the distribution
of cerebral glucose metabolism in healthy volunteers by
fractal analysis6,9,10 of F-18-flurodeoxyglucose (FDG)
brain positron emission tomography (PET) images. This
study examined whether there is an age-related alterna-
tion in the heterogeneity of the glucose metabolism in
some brain regions and whether such trends can be
observed in F-18-FDG brain PET imaging.

Methods

Participants

The study population consisted of 66 healthy volunteers
with a mean age of 46.9 ± 17.5 years (age range, 19-75
years). There were 43 men and 23 women. The data were
collected from ongoing PET research studies at Seoul Na-
tional University Hospital. Exclusion criteria were cur-
rent or prior history of any neurological or psychiatric
disease or significant medical illnesses or past history of
substance abuse. This study was carried out under guide-
lines for the use of human subjects established by the insti-
tutional review board at Seoul National University
Hospital. After a complete description of the scope of the
study was given to each participant, written informed con-
sent was obtained. The volunteers were subdivided into 2
groups: a young/midlife group (age < 55 years, n = 39, 28
men and 11 women) and an elderly group (age > 55 years,
n = 27, 15 men and 12 women).

F-18-FDG PET

PET studies were performed using an ECAT EXACT 47
scanner (Siemens-CTI, Knoxville, TN), which has an in-
trinsic resolution of 5.2 mm full width at half maximum
and images 47 contiguous planes with a thickness of 3.4
mm simultaneously for a longitudinal field of view of 16.2
cm. Before F-18-FDG administration, transmission scan-
ning was performed using 3 Ge-68 rod sources for attenu-
ation correction. Static emission scans were started 30
minutes after the injection of 370 MBq (10 mCi) F-18-
FDG and continued for 30 minutes. Transaxial images
were reconstructed by means of a filtered back-projection
algorithm, employing a Shepp-Logan filter with a cutoff

frequency of 0.3 cycles/pixel, as 128 × 128 × 47 matrices
with a size of 2.1 × 2.1 × 3.4 mm.

Image Analysis

Using Statistical Parametric Mapping 99 (SPM99;
Wellcome Department of Cognitive Neurology, London,
UK) software,27 all the images were spatially normalized
onto International Consortium for Brain Mapping
(ICBM) standard brain template, provided in SPM soft-
ware, to remove the intersubject anatomic variability.28,29

Affine transformation was performed to determine the 12
optimal parameters to register the brain on the template.
Small differences between the transformed image and the
template were removed by the nonlinear registration
method, using the weighted sum of the predefined
smooth basis functions used in discrete cosine transforma-
tion.29

The ICBM standard template was parceled into 9 vol-
umes of interest (VOIs), as follows: whole gray matter,
frontal lobe, parietal lobe, temporal lobe, occipital lobe,
striatum, cingulate gyrus, brain stem, and cerebellum.
Statistical Probabilistic Anatomical Map images of
ICBM,30-32 which are defined on ICBM standard tem-
plate and consist of the probability from 0 to 1.0 belonging
to specific regions, were classified into the above 9 regions
and summed to compose the probabilistic map for these 9
regions (Fig 1). Voxels with a probability greater than .5
were finally included in each VOI.

To measure quantitatively the heterogeneity of the
cerebral glucose metabolism, a fractal analysis, using the
intensity thresholding method proposed by Nagao et al
and applied to the analysis of heterogeneity in lung venti-
lation and brain perfusion SPECT images,6,9,10 was
applied to each VOI. Fractal dimension, a heterogeneity
index, can be obtained by fitting the following equation,
which relates a measure (M ) to the scale (ε) of the ruler that
measures M,

M(ε) = k • ε–D, (1)
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Fig 1. Volumes of interest superimposed on ICBM stan-
dard brain template. (A) Frontal lobe. (B) Parietal lobe. (C)
Temporal lobe. (D) Occipital lobe. (E) Striatum. (F) Cingulate
gyrus. (G) Brain stem. (H) Cerebellum.



where k is the proportionality constant and D is a fractal
dimension. The cutoff level to segment images was re-
garded as a scale ε, and the total number of voxels above
each cutoff level was regarded as a measure M. For each
VOI, total numbers of voxels above 5 cutoff levels (35%,
40%, 45%, 50%, and 55% of the mean of 1% highest voxel
values in each VOI) were obtained, and the fractal dimen-
sion was calculated by relating the logarithms of cutoff
level and number of voxels based on Equation 1 (Fig 2).
We used 35% as a lower threshold because the back-
ground activity out of brain comes to be excluded from
this threshold.

The total counts of the brain were also calculated to
examine the effects of the total count, which is another
potential confounder, on the fractal dimension.

Statistical Analysis

Participants were subdivided into 2 groups: a young/
midlife group (age < 55 years) and an elderly group (age >
55 years). A 2-tailed Student t test was applied to the com-
parison of fractal dimension in young/midlife and elderly
groups. The selection of age 55 is arbitrary, but this has
been used as a threshold age to discriminate elderly par-
ticipants from young/midlife in many cognitive and im-
aging researches. There is no definite criterion for this
purpose.

To examine the effect of age, gender, age-by-gender
interactions, and the total count on the heterogeneity of
the cerebral glucose metabolism, independent analysis of
covariance (ANCOVA) was performed for each VOI,
with gender being the independent variable (grouping

factor), age and the total count as the covariates, and the
fractal dimension as the dependent variable. The associa-
tions between age and the fractal dimension were also
tested using Pearson correlation analysis. The Bonferroni
method was used for the multiple comparison correction,
and a P value < .05 was considered significant. All the sta-
tistical analyses were carried out with SPSS 10.0 for
Windows.

Results

Fractal dimensions were higher for elderly volunteers rel-
ative to the young/midlife participants in all regions (Ta-
ble 1; Fig 3). The difference between the 2 groups in
fractal dimension was statically significant (P < .05, cor-
rected for multiple comparisons) for the whole gray mat-
ter, temporal lobe, striatum, and cingulate gyrus (Table 1).
Variance in the fractal dimension within each group was
high compared to the differences between the 2 groups.
For the whole gray matter, frontal lobe, parietal lobe, tem-
poral lobe, striatum, and cingulate gyrus, the fraction of
elderly volunteers who had a higher fractal dimension
than the mean in young/midlife volunteers was 90%,
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Fig 2. Segmented images obtained with each cutoff level
(35%, 45%, and 55% of the mean of 1% highest voxel values)
and plots between the natural logarithms of cutoff level and the
number of voxels above that cutoff level to calculate the fractal
dimension for whole gray matter. Images are spatially normal-
ized to the standard template and masked using the probabil-
istic map of gray matter. (A) A 22-year-old man, whose fractal
dimension for whole gray matter is 0.29. (B) A 60-year-old
man, whose fractal dimension for whole gray matter is 0.56.

Fig 3. Bar graphs of mean fractal dimension in young/
midlife versus elderly volunteers (*P < .05, **P < .00005, cor-
rected for multiple comparisons).

Table 1. Fractal Dimension (x ± SD) in Young/Midlife Versus
Elderly Volunteers

Group

Region Young/Midlife Elderly

Whole gray matter 0.224 ± 0.153 0.359 ± 0.186*
Frontal lobe 0.106 ± 0.046 0.145 ± 0.067
Parietal lobe 0.073 ± 0.033 0.087 ± 0.043
Temporal lobe 0.334 ± 0.160 0.464 ± 0.168*
Occipital lobe 0.216 ± 0.132 0.274 ± 0.180
Striatum 0.381 ± 0.157 0.573 ± 0.130†

Cingulate gyrus 0.071 ± 0.083 0.231 ± 0.133†

Brain stem 0.418 ± 0.279 0.501 ± 0.279
Cerebellum 0.187 ± 0.236 0.266 ± 0.334

*P < .05.
†P < .00005.



85%, 74%, 82%, 87%, and 95%, respectively. For those re-
gions, the fraction of young/midlife volunteers who had a
lower fractal dimension than the mean in elderly volun-
teers was 67%, 74%, 63%, 74%, 93%, and 85%,
respectively.

No significant effects of gender differences, age-by-
gender interactions, or total count were observed in any
of the regions when ANCOVAs were employed.
Significant age effects were observed in the whole gray
matter (F = 11.0, P < .05, corrected for multiple compari-
sons), frontal lobe (F = 9.70, P < .05), temporal lobe (F =
12.3, P < .01), striatum (F = 43.1, P < 5 × 10–7), and
cingulate gyrus (F = 45.9, P < 1 × 10–7).

In those regions, heterogeneity increased with age
when analyzed by the Pearson correlation. Those correla-
tions were moderate in the striatum and cingulate and
weak in whole gray matter, frontal lobe, and temporal
lobe. The correlation coefficient and increase of the
fractal dimension per decade of age for each region are
shown in Table 2.

Also noted is a trend that the variation in fractal dimen-
sion is higher in elderly volunteers than in young/midlife
participants for most regions that show significant correla-
tion with age except for the striatum (Table 1; Fig 4).
Those differences in variance were not, however, statisti-
cally significant (F test).

Discussion

The findings of this study indicate that heterogeneity in
cerebral glucose metabolism of healthy volunteers in-
creased with age in the whole gray matter, frontal lobe,
temporal lobe, striatum, and cingulate gyrus. Although
such a trend was evident in the striatum and cingulate

gyrus, the other regions showed weak correlations be-
tween fractal dimension and age. It should also be noted
that some of the oldest participants had fractal dimensions
that were less than many of the younger participants, and
some very young participants had high fractal dimensions
for some regions.

Age-related and regionally specific decreases in resting
cerebral glucose metabolism and similar age-related
declines in CBF and oxygen consumption have been
reported in many articles in which modern, high-
resolution PET scanners were used.12-23 Consistently, the
slope of the metabolic decline relative to the age and the
degree of difference in metabolism between young and
older people varied according to the regions examined.
For example, in a recent study in which the effects of
healthy aging on the regional cerebral glucose metabo-
lism were assessed with SPM,23 the bilateral and symmet-
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Table 2. Correlation Coefficient (r) Between Fractal Dimension
and Age and Increase of Fractal Dimension per De-
cade of Age (∆FD/Decade) for Each Volume of Inter-
est

Region r ∆FD/Decade

Whole gray matter 0.402* 0.0408
Frontal lobe 0.358† 0.0118
Parietal lobe 0.251 0.0054
Temporal lobe 0.409* 0.0405
Occipital lobe 0.215 0.0189
Striatum 0.619‡ 0.0611
Cingulate gyrus 0.661 0.0494
Brain stem 0.081 0.0128
Cerebellum 0.170 0.0271

*P < .01.
†P < .05.
‡P < 5 × 10–7.
§P < 5 × 10–8.

Fig 4. Scatterplot of fractal dimension versus age for the
whole gray matter (A), frontal lobe (B), parietal lobe (C), tem-
poral lobe (D), striatum (E), and cingulate gyrus (F).



rically distributed effects of age were most marked in the
inferior and posterior lateral frontal, anterior cingulate,
perisylvian temporoparietal and anterior temporal corti-
ces, left caudate head, and anterior thalamus. However,
the anterior dorsolateral prefrontal regions, posterior
cingulate, precuneus, association occipital and inferior
occipitotemporal cortices, as well as other areas, were rel-
atively less affected, with no significant effects of age
being identified in most of the occipital cortex.

Relative hypofrontality with increased age, and the
lesser effects of age on the posterior brain shown in this
example, are consistent findings of most previous studies
and may provide pathologic substrate for the age-related
deterioration in cognitive function and the slowing of
information processing revealed in numerous behavioral
experiments examining memory and other cognitive
functions in elderly individuals.33 The increase in hetero-
geneity of the cerebral glucose metabolism with an
increase in age shown in this study could be explained,
in part, by this anterior-posterior cortical metabolic
gradient.15,21,23

A nonlinear decline of brain activity would augment
the heterogeneity in the cerebral glucose metabolism.
When Mozley et al investigated the aging effects on the
CBF using HMPAO brain SPECT, they showed that a
nonlinear “broken stick” regression model fit the data
better than did a straight line.14 In addition, breakpoint
age, at which the 2 separate straight lines describing the
CBF change with age intersect, was demonstrated and
varied from 25 years and 40 years relative to the regions
that fit the model.

Structural imaging studies have shown age-related loss
of brain tissue to be more severe in the frontal lobes than
elsewhere in the brain.34 Therefore, a partial volume
effect (PVE), due to cortical atrophy, would confound the
results of investigation on the effects of healthy aging on
the cerebral glucose metabolism. We did not correct for
that PVE because structural MRI data for the participants
were not available. Regionally different levels of cortical
atrophy could alter the heterogeneity in the cerebral glu-
cose metabolism measured by PET imaging, which has
limited spatial resolution. However, the fractal analysis
would be less sensitive to the PVE than an estimation of
the mean pixel intensities in VOIs, which is the conven-
tional quantification method. This is because the fractal
dimension is obtained from the slope of the linear regres-
sion equation relating the natural logarithms of the cutoff
level (ε) and the number of voxels (M ). If the intensity
level in a VOI is globally decreased (or increased) by the
PVE, the number of voxels above each cutoff level will be
scaled (M → k × M ) due to the continuity of the intensity
change in the boundary of the gray matter region. Scaling

the number of voxels will alter the y intercept of the ln ε –
ln M plot, but the slope will be unaffected. However, it is
possible that the fractal dimension is not totally free of the
PVE because a local alteration of the intensity by the PVE
within a VOI can modify the shape of the intensity histo-
gram. Further investigations into the existence of an age-
related effect on the heterogeneity in the cerebral glucose
metabolism following a partial volume correction with
structural MRI will be necessary.35,36

The effects of a possible error in the spatial normaliza-
tion of the images should be considered because the spa-
tial normalization and placement of the VOI is a crucial
processing step in estimating the fractal dimension. Limi-
tations in spatial normalization of a brain with age-related
atrophy can lead to a poor fit of the VOIs with an associ-
ated increase or decrease in heterogeneity in some elderly
participants. In the fractal analysis used in this study, the
total numbers of voxels above 5 cutoff levels were
obtained, and the fractal dimension was calculated by
relating the cutoff level and the number of voxels. The
lowest threshold, 35% of the mean of 1% highest voxel
values in each VOI, was so high that most voxels above
this threshold were included in the VOIs defined in this
study using probabilistic maps. Therefore, there was low
likelihood that errors in the spatial normalization and
placement of the VOIs led to an incorrect estimation of
the fractal dimension. However, a detailed analysis with
the VOIs placed on a co-registered MRI will be needed to
confirm this.

Heterogeneity in nuclear medicine image could be
inversely related to the total counts due to the properties
of Poisson statistics. However, no significant effect of the
total count was observed in any of the regions. This might
be because the fractal dimensions used in this study were
estimated from the histogram of the counts. A histogram
is less sensitive to the statistical noise associated with the
total count because the fluctuations in the count are can-
celed out when the counts are combined into a histogram.

Two types of heterogeneity have been studied in the
context of nuclear medicine research. Conceptually, the
first (spatial heterogeneity) represents the heterogeneity
of the spatial distribution of pixel counts. If pixels with
similar counts are distributed randomly against a white
background in an image, the image will appear heteroge-
neous; otherwise, it will appear homogenous. Fractal
analysis using a box-counting technique5,8 is a method
used to evaluate such heterogeneity. The second type of
heterogeneity (count heterogeneity) describes the hetero-
geneity of pixel counts in an image. If all pixels have the
same value, the image will appear homogeneous; how-
ever, if the histogram of the image is a uniform distribu-
tion, it will appear heterogeneous. The standard devia-
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tion, skew, or entropy of image histograms have been
used to evaluate count heterogeneity. Nagao’s
method,6,9,10 used in this study, is an example of such
methods. Definitions and relationships of these types of
heterogeneity can be found in the literature.37

Nagao’s intensity thresholding method has been criti-
cized.38 Critics claim that the count heterogeneity does
not represent the heterogeneity itself and that this type of
heterogeneity would disappear by adjustment of the dis-
playing window settings. However, in the interpretation
of pathologic images, nuclear medicine physicians prefer
count heterogeneity, which is caused by the regionally
abnormal uptake of radiopharmaceuticals, and no one
would ignore this pattern by intentionally widening the
range of the color scale. Nagao’s use of this method for the
evaluation of CBF heterogeneity, shown in the brain per-
fusion SPECT images of the patients with Alzheimer’s
disease, is a good example.9,10 Nagao showed how the
count heterogeneity, frequently recognized in clinical sit-
uations, could be quantified using this method. Decline of
the CBF in Alzheimer’s disease displays a regionally
dependent time course. In an early state of the disease, the
CBF in the temporoparietal region declines first, and the
regional CBF decrease spreads to frontal and other brain
regions later. Nonetheless, the CBF is relatively preserved
in primary sensory cortices. Therefore, the CBF
distribution in Alzheimer’s disease is more heterogeneous
than in normal controls.

We agree with the criticism that the fractal nature of
Nagao’s equation is fractal only in its shape.38 Counts that
are distributed over a 3-dimensional space are in a single
dimension in Nagao’s framework and only mimic the
complex fractal nature.

Conclusion

Heterogeneity in the cerebral glucose metabolism of
healthy volunteers increased with age. However, no gen-
der differences were identified, and the effect of age on
heterogeneity was not regionally uniform.

This work was supported in part by the Ministry of Science and Technol-
ogy of Korea and in part by the BK21 Human Life Sciences.
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